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Abstract

Over the past two decades, our knowledge of the Solar System’s transneptunian re-
gion (often called the Kuiper Belt) has been gradually increasing. Observational
surveys have greatly expanded the inventory of Trans-Neptunian Objects (TNO),
which are distant icy bodies thought to be relics from the giant planet formation
era.

In the main Kuiper Belt region, a complex bimodal inclination structure is present,
leading to the common assertion that current TNOs may have accreted in different
regions of the protoplanetary disk. To study this blended inclination structure, I
develop an improved semi-analytical method to compute TNO ‘free’ inclinations,
which are well conserved and thus better represent the primordial inclination pro-
file.

In the implanted Kuiper Belt, a semimajor axis power law distribution is ob-
served in the outer Solar System surveys. I show that in a patched-conic model,
the power law is a natural outcome after multiple flybys of the perturbing planet
homogenize the directions of planetary relative-velocity vectors. This model allows
one to analytically compute the diffusion coefficient in closed form.

In the distant Kuiper Belt, several striking features seem to challenge our previ-
ous understanding of the early Solar System: 1) a very large population of objects
in distant mean-motion resonances with Neptune, 2) a substantial detached popu-
lation that are not dynamically coupled with Neptune’ effects, and 3) the existence
of three very-large perihelion objects. I demonstrated in this thesis, that a super-
Earth-mass planet temporarily present in the Solar System on a Neptune crossing
orbit (referred to as a ‘Rogue Planet’), is able to create all these structures in the

distant Kuiper Belt. Such a planet would have formed in the giant planet region
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and gotten scattered to a highly-eccentric orbit with a few hundred au semimajor
axis with a typical lifetime of 100 Myr. Additionally, I showed this transient planet
would not have heated the cold belt’s very low free inclinations to larger than ob-
served. Both the structures in the distant belt and the existence of an unheated cold
belt provide constraints to narrow down the mass and possible dynamical histories

the rogue might have taken.
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Lay Summary

My thesis proposes a hypothesis that a rogue planet existed in the early Solar Sys-
tem to explain puzzling features in the observable Kuiper Belt (a band of objects
orbiting beyond Neptune). This planet was most likely a planet the scale of the
Earth formed between the giant planets and then ejected to a distant orbit where its
gravity sculpted the orbits of small celestial bodies. By simulating the evolutions
of transneptunian objects under the influence of this temporarily-present rogue
planet, I demonstrate that it could explain their spatial distribution. This research
sheds new light on the early history of our Solar System and provides a possible ex-
planation for some of the mysteries in the Kuiper Belt. The findings of this thesis
may also inspire future astronomical discoveries in the uncharted territory of the

Solar System.



Preface

The text of this dissertation includes a combination of the author’s original studies

and modified reprints of previously published material.

Chapter 1 (introduction):

This chapter introduces the scientific background of Solar System’s known struc-
tures, as well as the analytical and numerical tools that I utilized throughout this
dissertation. The GLISSER integrator, the main numerical N-body integrator I used
in this thesis, was mainly developed by Kevin Zhang (then an undergraduate stu-
dent at UBC) and Brett Gladman (Zhang & Gladman, 2022). I contributed to the
integrator by improving its planetary orbit interpolation algorithm, extending its

capability to write out close encounters, and fixing several bugs in the original code.

Chapter 2 (published):

« Y. Huang, B. Gladman & K. Volk, Free Inclinations for Trans-Neptunian Ob-
jects in the Main Kuiper Belt. The Astrophysical Journal Supplement Series
259, 2 (2022)

This paper presents a robust method to accurately compute the constant free in-
clinations for cold classical Kuiper Belt objects. The original idea came out of Brett
Gladman’s experience at a TNO seminar, in which he found many Kuiper Belt ob-
servers and spectroscopists lacked a consensus of how to differentiate cold and hot
classical Kuiper Belt objects through their inclinations. A superior way, however, is
not using the ecliptic inclination but the free inclination, a constant quantity from

the Laplace-Lagrange secular theory. This soon became a collaborative project be-
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tween me, Brett Gladman, and Kat Volk (a planetary dynamicist at the Planetary
Science Institute). Kat Volk carried out the numerical simulations for main-belt
TNOs using a pre-existing pipeline. I wrote the code and manually inspected the
orbital histories of 2,018 objects in order to categorize them based on their dynam-
ical class. I tried different analytical methods to compute their free inclinations,
and realized that because of the presence of a nearby secular resonance, the most
robust and accurate way is to compute their precession rates by averaging the dom-
inant Hamiltonian over two fast angles (the so-called ‘double average’ method). I
then computed the free inclinations for the 2,018 TNOs and tabulated them in a
datatable. I wrote the manuscript, with editing by Brett Gladman and Kat Volk, and
produced all the figures. I also self-released a searchable datatable on my personal
academic website (link), with which people can quickly find the free inclinations for

objects they’re interested in.

Chapter 3 (unpublished):

This chapter is an origin study by me and Brett Gladman. During my early
numerical experiments on the rogue planet theory, Brett Gladman pointed out to
me that the a=2-° distribution observed in the current implanted population (Petit
et al., 2011) was probably related to the power law in Levison & Duncan (1997)’s
cometary dynamics simulations. Upon closer inspection of the literature, we real-
ized the steady state was actually an a~!> power law in the number density (the
r~25 power law in Levison & Duncan 1997 is actually a surface density, one index
lower), which came from Yabushita (1980)’s exact solutions of a diffusion equation.
This piqued my interest of finding a simple interpretation to the power law in sum-
mer 2022, when I soon realized that from the viewpoint of flyby dynamics, the a =1+
power law is equivalent to a uniform distribution in the directions of incoming ve-
locities 6. I derived the equations, produced all the figures and wrote the chapter,
with valuable guidance and edits from Brett Gladman. Sam Hadden (a postdoc-
toral researcher at the Canadian Institute for Theoretical Astrophysics) coinciden-
tally also worked on a similar topic but from the perspective of a diffusion problem.
Brett, Sam, and I had meaningful discussions during our visit at CITA, and Sam
and I also had a meaningful discussion during his visit at UBC. Our works provide

complementary ways to study the scattering dynamics and collectively, they depict
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a broad picture to the cometary scattering problem.

Chapter 4 (introduction):
This chapter introduces the scientific background of planetary formation the-

ory and the early history of the Solar System.

Chapter 5 (published):

« Y. Huang, B. Gladman, M. Beaudoin & K. Zhang, A Rogue Planet Helps to
Populate the Distant Kuiper Belt. The Astrophysical Journal Letters 938, L23
(2022)

This paper presents a close inspection of the rogue planet’s dynamical effect on pop-
ulating resonant and detached TNOs in the a < 100 au Kuiper Belt. The idea for this
project came from my preliminary numerical experiments with the rogue planet in
2021. I showed that in simulations with the rogue planet, vertical spikes appear on
the a — g plot which clearly correspond to neptunian resonances. I carried out more
GLIssER simulations and demonstrated that it is the rogue planet’s encounter effect
that help populate the a < 100 au Kuiper Belt. I derived analytical estimates for
the rogue’s encounter frequency and the semimajor axis change it induces. Mean-
while, UBC undergraduate student Matthew Beaudoin was working with Brett on
a separate project about the perihelion distribution and population estimate of the
detached TNOs. I provided Matthew with the orbital distribution of the distant
Kuiper generated from my rogue planet simulation, which helped him improve his
population estimate. He also provided me with the code to quickly simulate de-
tections from an intrinsic model using the OSSOS survey simulator (Lawler et al.,
2018b), which I used to validate my own simulation. I wrote the majority of the
manuscript, with major edits and improvements done by Brett Gladman to suit the
format of an Ap] Letter. I also produced all the figures and animations.

Chapter 6 (unpublished):

This chapter is an origin study by me and Brett Gladman and is the main in-
vestigation of the rogue planet’s dynamical history and parameters. The idea of
explaining high-g detached bodies with a temporarily-present planet was first hy-
pothesized in Gladman et al. (2002) and demonstrated in Gladman & Chan (2006).
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Brett brought up this hypothesis during my PhD interview in 2018, and it quickly
piqued my curiosity after I arrived at UBC and was deciding on my thesis project
with Brett. While working on the new dynamical phenomenon we found in Chap-
ter 5, I also started numerically experimenting with the rogue planet’s history us-
ing the REBOUND package (Rein & Liu, 2012). I used REBOUNDX (Tamayo et al.,
2019) to model planetary migrations. Subsequent test particle simulations show-
ing the dynamical sculpting induced by the rogue were also carried out by me with
GLISSER. I wrote the entire chapter, derived analytical constraints, produced all the
figures and tables, presented the rogue planet model, and performed all the anal-
yses. Brett Gladman provided helpful comments and suggestions on the text and
figures. Matthew Beaudoin’s script was used to simulate detections with the OSSOS

survey simulator (Lawler et al., 2018b).
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its location of pericenter, measured in the direction of motion.

w - The longitude of pericenter. Defines as w = w + (2 for prograde orbits and
w = w — 2 for retrograde orbits.

P - The orbital period. Defined as the amount of time a give object takes to complete

a3
GMgp
n - The mean motion. The angular speed required for a body to complete the orbit.

Defined as n = 27".

M - The mean anomaly. A fictitious angle that describes the average change in po-

one orbit. P = 27 for solar system bodies.

sition of an object over time and is defined by 27” peri» Where P is the orbital period,
and tper; is the time since the last pericenter passage.

A - The mean longitude. Define as A = M + w.

f- The true anomaly. The angle between the direction of the pericenter and the cur-
rent position of the object.

¢ - The specific orbital energy. Defined as e = —4~.
Ry - The Hill sphere radius. For Mpjanet/ Mo < 1, the sphere around a planet where
the gravitational dominance of the planet exceeds that of the sun. Ry = ry/ A;I%ag‘.
' - Secondary to primary mass ratio in the Restricted Three-Body Problem (RTBP).
Defined as i’ = Mplanet/ (M+ Mplanet)'

Cy - Jacobi integral in the Circular Restricted Three-Body Problem (CRTBP).

T - Tisserand parameter. A conserved quantity for a small body in CRTBP. This
quantity has to be computed with respect to a certain planet (e.g. Neptune with the
semimajor axis of ay), where Ty = % + 2, /(1 — €?) ;-cosi ~ Cj.

©j.x - The nominal resonant angle for the j:k mean-motion resonance. @j.x = jA —
kAplanet — (j — k).
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&i - The i-th eigenfrequency of the solar system related to the eccentricity solution.
E.g., g5 is the fifth e eigenfrequency.

fi - The i-th eigenfrequency of the solar system related to the inclination solution.
E.g., fs is the eighth i eigenfrequency.

v; - The i-th eccentricity secular resonance of the solar system.

v1; - The i-th inclination secular resonance of the solar system.

A - The expected () precession rate of a small body in the solar system.

B - The expected w precession rate of a small body in the solar system.

L - The first action of the canonical Delaunay variables. L = \/jia .

G - The second action of the canonical Delaunay variables. G = L./(1 — ¢2).

H - The third action of the canonical Delaunay variables. H = Gcosi.

‘H - Hamiltonian of a dynamical system.

H-magnitude - Absolute magnitude. The apparent magnitude an object would have

if it were located in an equilateral triangle 1 au from the Sun and the Earth and at

zero phase angle.
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Chapter 1

Introduction

The early Solar System was a chaotic environment, with multiple forces shaping the
orbits of planets and small bodies in it. One intriguing possibility is that a ‘rogue
planet, temporarily present in the Solar System, could have played a role in shaping
the current orbital structure of Trans-Neptunian Objects (TN0). This hypothesis is
the focus of this thesis, which aims to investigate the dynamics of transneptunian
objects under the influence of a rogue planet. By utilizing a combination of numer-
ical simulations and analytical tools in celestial mechanics, my study sheds light on
the potential impact of a rogue planet on the evolution of the Kuiper Belt and the
formation of its observed structures. The results of this research will contribute to
our understanding of the early Solar System and the role of rogue planets in shaping
planetary systems. This thesis not only provides valuable insights into the dynamics
of TNOs, but also constrains the parameter space of the hypothetical rogue planet,
providing valuable information for future studies on rogue planets and their role in

shaping planetary systems.

1.1 Celestial Mechanics Tools

My dissertation mainly involves the use of analytical and numerical methods to
study the orbital distribution and dynamical evolution of TNO, for which a basic
understanding of celestial mechanics is needed. In this section, I will briefly in-

troduce the definition of orbital elements, the Hamiltonian formalism of celestial



mechanics, Mean-Motion Resonance (MMR), and secular resonance. I will refer to
textbooks, such as Solar System Dynamics by Murray & Dermott (1999), an un-
published celestial mechanics book by Burns et al. (2022), and Modern Celestial
Mechanics by Morbidelli (2002).

1.1.1 Orbital Elements

The vast majority of Solar System objects orbit a central dominant massive body
under Newtonian gravity. In 1609, Kepler first discovered that “the orbit of every
planet is an ellipse with the Sun at a focus”, which became the famous first law of
planetary motion. The term ‘Keplerian orbit’ is now used to describe the motion
of one body relative to the massive body, or their common center of mass (a.k.a the
barycenter). More generally, the path of an object under the gravity of a central mass
follows a ellipse, a parabola, or a hyperbola, which all belong to a group of curves
known as conic sections.

The size and shape of a Keplerian orbit is defined by its eccentricity (e) and semi-
major axis (a). The trajectory is a perfect circle if e = 0, an ellipse if 0 < e < 1,
a parabola if e = 1, and a hyperbola if e > 1. For Solar System bodies, bound
orbits are essentially ellipses. Only gravitationally unbound comets and interstellar
objects have hyperbolic orbits relative to the Sun. Additionally, small bodies during
planetary flybys have hyperbolic orbits relative to the planet, which will be discussed
in Section 3.2. Figure 1.1 shows an bounded elliptic orbit and an unbounded hy-
perbolic orbit. Semimajor axis (a) is one half of the longest axis of the ellipse, and
periapsis (q) is the distance between the point of closest approach and the central
body. For objects orbiting the Sun, ‘perihelion’ is more commonly used, while for
objects orbiting the Earth, ‘perigee’ is used. The three quantities, 4, e, and g satisfy

the following relationship:

g=a(l—e) or e:I—;. (1.1)

To describe the spatial orientation of the orbit and the object’s orbital position

relative to some reference plane, the following angles are often used (Figure 1.2):

o i-Inclination. The tilt angle between the orbital plane and the reference plane.

Prograde orbits move counterclockwise and have i < 90°. Retrograde orbits
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Figure 1.1: A diagram describing an elliptic orbit (0 < e < 1) and a hyperbolic
orbit (e > 1). The dashed line connecting the periapsis and the central
body (black dot) is the apsidal line. a is the semimajor axis and g is the
pericenter distance. Only elliptic orbits have well-defined semimajor axis
and apoapsis.

move clockwise and have i > 90°.

« (2 - Longitude of the ascending node. The intersection between the orbital
and reference planes is called the line of nodes. The ascending node is where
the orbit passes upward through the reference plane, and €2 is the orientation
of this node in the reference plane, as an angle measured from the ascending

node to the vernal point V.

o w - Argument of pericenter. The orientation of the ellipse in the orbital plane,

as an angle measured from the ascending node to the pericenter.

o f-True anomaly. The position in orbit at a specific time, as an angle measured

from the pericenter to the orbiting object.

The six orbital elements, g, ¢, i, {2, w, and fare a set of independent coordinates
that defines the size, shape, and spatial orientation of an elliptic orbit, as well as the

celestial body’s exact location. They can be interconverted to the Cartesian coordi-



Figure 1.2: A diagram describing the spacial orientation of a prograde orbit
(yellow) in a reference plane (gray). The intersection between the two
planes is the line of nodes (dashed line with no arrowhead). The cross
marks the pericenter, and the dashed arrow points to the reference di-
rection, which is normally the vernal equinox Y in the Solar System. i is
the orbital inclination, {2 the longitude of the ascending node, w the argu-
ment of pericenter, w the longitude of pericenter, and fthe true anomaly.

nates, uniquely corresponding to a specific state vector that consists of position (x,
¥, z) and velocity vectors (X, y, z).

Some orbital elements are often expressed in alternative forms to avoid singular-
ities. For example, if the orbital inclination i is precisely 0° or 180°, then the longi-
tude of the ascending node 2 becomes ill-defined. In co-planar case, the longitude
of pericenter w (pronounced “curly pi”) is often used to describe the orientation of
the apsidal line that connects the periapsis, the central body, and the apoapsis (the
dashed line in Figure 1.1). In the Three-Dimensional (3D) case, the longitude of
pericenter is also used, defined as @ = 2 + w for prograde orbitsand w = 2 — w
for retrograde orbits (Huang et al., 2018), despite the fact that the angles {2 and w lie
in different planes. In general, therefore, w is just a broken angle used to describe
the azimuthal orientation of the apsidal line, not the precise longitude. When the
orbital plane approaches the reference plane (i.e. i = 0° or 180°), v approaches the
real longitude of pericenter.

As the object moves on an elliptic orbit, the time-varying distance r between the



central body and the object can be expressed as a function of the true anomaly f:

a(l —é?)

= —. 1.2
’ 1 + ecosf (12)

This equation is often called the orbit equation of the two-body problem, but is also
the polar coordinates equation for an ellipse, with the origin at one focus and f = 0
corresponding to periapsis.

The orbital period P is the time between two consecutive pericenter passages,

P:2W<f>a (1.3)
w

where the gravitational parameter p is the product of the gravitational constant G
and the mass of the central body M:

given by the Kepler’s third law:

1= GM. (1.4)

For any Keplerian orbit, the vis-viva equation, or the orbital-energy-invariance equa-

¢:H(31>, (1.5)

a

tion, is as follows:

where v is the relative speed of the two bodies. This comes directly from the conser-
vation of the specific orbital energy epsilon, which is the sum of the mutual potential

energy and the total kinetic energy per mass

2

% I W
-~ 1.6

2 r (1.6)

€= .
2a

When it comes to solving the orbiting body’s movement with time, mean anomaly

M is more convenient, which is defined as
M= l’ltperi, (1.7)

where t,¢;i is the time since the last pericenter passage, and  is called the ‘mean

motion’ of the body. Mean motion n denotes the average angular speed required



for that body to complete one orbit. It is simply one full revolution (27, 360° or 1)
divided by the orbital period P:

n= —. (1.8)

For a circular orbit, the orbiting body’s mean motion is equal to the constant angular
velocity, so the true anomaly fis also equal to the mean anomaly M. For an elliptic
orbit, however, the orbital body speeds up near the pericenter and slows down near
the apocenter, as described by the Kepler’s second law. To solve for f as a function

of time, Kepler’s equation is needed:

M =& — esin€,
tan— = tan—,
2 1+e 2

where £ is the eccentric anomaly. Calculating M for a given value of fis straightfor-
ward. However, solving for £ and f when M is given can be considerably challeng-
ing, as Kepler’s equation is a transcendental equation. Newton’s iterative method
and series expansions are generally used to evaluate &, of which I will not get into
details.

1.1.2 Hamiltonian Formalism

The Hamiltonian formalism is commonly used in celestial mechanics to analyze
and simplify a dynamical problem (Murray & Dermott, 1999; Morbidelli, 2002). In
Hamiltonian mechanics, a dynamical system’s state is described in 2n-dimensional
canonical phase space coordinates (p, q), where 7 is the number of degrees of free-

dom. In such coordinates, the Hamilton’s equations of motion is given by

dg _oH dp _ OH

dt  op’ dt  dq’ (1.10)

when H does not depend on time. There only exists a limited number of Hamil-
tonian systems that are fully solvable and does not possess chaos, such as the sim-
ple harmonic oscillator and the two-body system. They are often called integrable

Hamiltonian systems. For integrable systems, of crucial importance is the Arnold—



Liouville theorem, which states that there exists a canonical transformation to action-
angle coordinates in which the transformed Hamiltonian is dependent only upon
the ‘action’ coordinates p and the ‘angle’ coordinates q evolve linearly in time.

As an example of the application of the Arnold-Liouville theorem, let’s intro-

duce the following variables for the two-body problem:

L = \/ua, I=M,
G=Lv1—¢2, g=w, (1.11)

H = Gcosi, h=Q.

The canonical variables L, G, H (actions) and [, g, h (angles) are usually called the
Delaunay variables. With this choice, the integrable Hamiltonian of the two-body

problem will be dependent solely on the first action variable L:

2

L
=—— 1.12
M= 15, (112)
. . . K
and H is also the specific orbital energy 0 (1.6).
a
With Equation (1.10), the Hamilton’s equations of motion are simply
1
. ) 3\ "2
i—o, l:<“> ,
g (1.13)
G=0, g=0, ’
H=0, h=0.

These equations of motion trivially state that in the two-body problem, orbital ele-
ments a, e, i, {1, and w are all constant while the mean anomaly M evolves linearly
with the speed of mean motion 1=n(1.8).

To avoid the same singularity problem when i and/or e are zero, the following

Poincaré variables (also known as the modified Delaunay variables) are often used



for prograde orbits:

A=L1L=/ua, A=l+g+h=M+w,
P=L-G=L(1—-+1-¢?), p=—-g¢g—h=—-w, (1.14)
Q:G—H:2Gsin2%, q=—h=-Q,

where A = M 4 Q 4 w is called the mean longitude, evaluating the orbiting body’s
azimuthal location on the reference plane. For i > 0°, it is another broken angle as
w. In this new set of coordinates, the Hamiltonian (1.12) and the resulting equations
of motion (1.13) remain unchanged.

The orbital elements and canonical coordinates are derived from the two-body
problem, where Keplerian orbits are fixed and unchanged under the Newton’s grav-
ity, which, by definition, is precisely proportional to the inverse square of the dis-
tance F o< r~2. Bertrand’s theorem, on the other hand, states that any small pertur-
bation off a purely r~2 central-force law (either from the general relativity correction
or the gravity of a planet) will result in the particle orbits not closing, causing orbits
to precess in physical space (i.e. non-zero €2, ¢, or @). If the perturber’s gravi-
tational effect is significantly smaller than the central body’s, the induced orbital
element variations will have longer timescales than the Keplerian orbital period P.
One can thus still use the instantaneous orbital elements (called the ‘osculating or-

bit’) to study orbital evolutions of small bodies under such perturbations.

1.1.3 Restricted Three-Body Problem

A dynamical problem in celestial mechanics commonly investigated is the Restricted
Three-Body Problem (RTBP), in which a massless particle moves under the influence
of two massive bodies, in our case, the Sun (the primary, with the mass m; = 1— /)
and the planet (the secondary, with the mass m, = ). Having negligible mass,
the force that the particle exerts on the two massive bodies may be neglected, and
the system can therefore be described in terms of a two-body motion. It is thus a
restricted approximation to the original three-body problem for analyzing the mo-
tions of spacecrafts and small bodies whose masses are negligible compared to those

of the Sun and planet.
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Figure 1.3: The circular restricted three-body problem as described in the co-
rotating (x, ) coordinate system (blue). The two primaries m; = 1 —
and m, = p’ always lie on the x axis which, due to their mutual circular
orbits, rotates around the center of mass (origin) uniformly with the mean
motion n. The massless particle is marked with the black cross, whose

distances from the two. The total mass and the constant distance between
the two masses are both normalized to unity.

The Hamiltonian of the restricted problem can be written in Delaunay’s vari-
ables (1.11) as (choosing the time unit so that G = 1)

7‘[: HO +H1(L7 G7H717g7h7 t)?
—

Keplerian term disturbing term (1.15)

);

1 ;1 r-rp

M= =i — B
2.2 Al el

where r is the heliocentric position vector of the small body, and rp that of the
perturber, and A, = r — r;,. The Keplerian term H, is the two-body Hamiltonian
of the test particle with respect to the central body, and the disturbing term #, (also
known as the disturbing function) represents the gravitational perturbation induced
by the additional mass. This Hamiltonian # can be explicitly written and used for
practical computations, such as computing the expected precession frequency in
Chapter 2.



If the planet orbits the Sun on a circular orbit, or its eccentricity is so small that
the orbit is close to a circle, the RTBP can be simplified to the Circular Restricted
Three-Body Problem (crTBP), which is depicted in Figure 1.3. I will not go into
the analytical details, but it is important to know that there exists a ‘first integral of
the motion’ Cj, which is called the Jacobi integral or Jacobi constant of the CRTBP
(Szebehely & Jefterys, 1968):

CI = ZU(%% Z) - VZ’

1— ! . . .
G= 4y A +5 @4y, Q19
1 2
rotational potential ~ gravitational potential kinetic energy

where v is the particle’s velocity in the co-rotating frame and the mean motion is
normalized to n = 1. U(x, y, z) is the ‘effective potential’ of the system, which is a
combination of the rotational and gravitational potentials.

The Jacobi constant is effectively a conserved “energy” of the motion in the
CRTBP. If we re-write Equation (1.16) in the inertial frame, substituting the velocity

and position vectors with Keplerian elements, we get
1 11
— 4+ 2/A(l —e)cosi + 24/ (— — —) =y,
A 2 r
1
TEX—I—Z\/A(I — e?)cosi ~ (y,

where 7 is the Tisserand parameter and A = a/a, is the normalized semimajor

(1.17)

axis with respect to the planet (a,). The Tisserand parameter remains approximately
unchanged given the mass parameter 1 is small and when the particle is far from
both the Sun and the planet (i.e. 1/r; and 1/r, are both small). This quality is widely
used in cometary dynamical classification (Levison, 1996) and I will demonstrate
that it also provides valuable information for the Kuiper Belt (see Section 3.2 and
Chapter 5).

1.1.4 Mean-Motion Resonances

A mean-motion resonance between two celestial bodies orbiting the same central

body occurs when they have orbital periods very close to a simple integer ratio (a.k.a

10



mean-motion commensurability). I will mainly focus on mean-motion resonances
between TNOs and Neptune, which happens when the mean motions n, /n ~ k/k,,
or

kn — kyn, ~ 0, (1.18)

where k and k,, are positive integers. We call such resonance a ‘k:k, resonance’ and
kp:k the ‘resonant ratio. For exterior resonance where a > ap, the resonant order is
defined as k — k.

The nominal resonant location ayes, which is the semimajor axis (of the small

body) that would give itself the orbital period commensurate with that of the planet,

2
k\3
Ares = <kp> ap. (1.19)

When the small body is in resonance with the planet, the critical resonant angle

is given by

will oscillate around an equilibrium point, which is often called ‘libration’ in reso-
nant dynamics. This libration center is usually located at 0° or 180°, but for exte-
rior n:1 resonances, asymmetric libration centers (such as +60°) also exist (Beaugé,
1994).

The evolution of the resonant angle ¢ is related to the long-term variation of
the orbital orientation in the reference frame co-rotating with the planet’s mean
motion. As an example, a and ¢ evolutions and the orbit of a resonant TNO -
(472235) Zhulong - are shown in Figure 1.4 to demonstrate the geometry encoded
in the resonant angle. The 5:2 mean-motion commensurability between Zhulong
and Neptune creates the two-fold symmetry in the rotating frame, and ¢ is related
to the angular location of each perihelion passage with respect to Neptune (denoted
by those ‘curly wires” around the gray dashed circle). This can also be seen from
Equation (1.20). By noting that @ = X when the particle is at perihelion, we get
© = kp(A—Xp), where A — ), is the difference in true longitude between the object
and the planet (Volk & Malhotra, 2022). This states that the orbit’s circumferential

oscillation amplitude in the rotating frame must be equal to Ap/k,.

11



Bounded by the geometrical relationship between the resonant angle ¢ and the
orbital orientation with respect to the planet, a resonant small body is less likely
to experience strong close encounters with the planet, as illustrated in Figure 1.4’
right panel. This dynamical mechanism is often called the ‘phase protection’ of a
resonance, stabilizing the small body’s orbit even if its perihelion crosses the planet’s

orbit. I will dive deep into resonant dynamics in Chapter 5.

1.1.5 Secular Resonances

In the restricted three-body problem, when the small body is not in mean-motion
resonance and not able to approach the planet (characterized by perihelion beyond
the planet’s orbit), it generally experiences extremely tiny a variation and small e,
and 7 oscillations, with the pericenter moving in a prograde sense (termed preces-
sion, denoted by w increasing linearly) and the node moving retrograde (termed
regression, denoted by () decreasing linearly). This motion is often called secular
variations or secular drifts, because the precession rate is significantly slower than
the small body’s mean motion'.

The secular precession rates can be computed analytically. By directly expand-
ing the disturbing function into secular (i.e. non-resonant) terms, one can solve for
the precession rates (cv and ) with Lagrange’s planetary equations (see Brouwer
& Clemence 1961; Murray & Dermott 1999; Mardling 2013). In the approximation
that the planet and the small body both have low-e and low-i orbits, the planet-
induced apsidal and nodal processing rate are nearly equal in magnitude. For ex-
ternal small bodies perturbed by an internal planet (like TNOs), the precession rates

are given by
LRLLIAC)

o -~ TS 3/2(04),
© (1.21)
R éﬂnaz ifa<k1
~ 4M® 9 9

where o is the semimajor axis ratio of the two bodies (always < 1)

a
a= -2 (1.22)
a

'soisthe regression rate, but for the sake of simplicity, I will now start to call both drifts ‘precession.
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Figure 1.4: Orbital evolution of TNO (472235) Zhulong over 50 kyr in Nep-
tune’s 5:2 mean-motion resonance. Left: The time evolution of a and the
resonant angle . Right: Zhulong’s position projected on a reference x-y
plane that co-rotates around the Solar System’s barycenter at the rate of
Neptune’s mean motion; Neptune thus remains nearly fixed along the x
axis (red dot), whereas Zhulong follows the black trajectory clockwisely,
except at perihelia (represented by those ‘curly wires’) where the object
moves faster than Neptune. Zhulong completes two orbits (an example
of two orbits is shown in yellow) for every five Neptune orbits, creating
the two-fold symmetry in the rotating frame. The Ay ~ 180° libration
amplitude corresponds to a circumferential oscillation of the perihelion
location in the rotating frame of Ay /2 ~ 90° (both labeled in red). De-
spite its perihelion distance being very close to Neptune’s orbit (gray circle
with a 30 au radius), the TNO never approaches the planet at perihelion
passages. This is known as the ‘phase protection’ mechanism of a reso-
nance.
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and bY (cv) is the Laplace coefficient, defined as

() B l 2 cosjip dyp
bs"(a) = 77/0 (1 — 2acosy) + a2)s (1.23)

Now let’s turn to the planet. If the planetary system only consists of a single
planet, its Keplerian orbit is fixed in physical space. Adding another planet, the
two planets’ mutual gravitational forces pull on each other as they orbit the Sun.
This causes both of them to acquire forced eccentricities and inclinations (assuming
they’re not co-planar) and to precess both nodally and apsidally.

In this two-planet case, a secular resonance occurs when the particle’s natural
precession rate, which is the sum of the rates induced by the two planets, is close
to either planet’s. This is because the magnitude of the particle’s forced eccentricity

(eforced) and inclination (ifyrceq) has a term

2
1
€forced X Z A g-’
= ' (1.24)

where A and B are the small body’s expected apsidal and nodal precession rates, and
gj and f; are the two planets; respectively. Noting that A — g; or B — f; (which are
called “small divisors”) appears in the denominators, when A or B approaches the
corresponding planetary secular frequencies, the forced elements in Equation (1.24)
diverge in the linear theory, which does not reflect the real orbital dynamics.

An example is shown in Figure 1.5. When an apsidal precession of z, ~ @ is
imposed on Neptune’s orbit, the small body will be subjugated to a much larger e
oscillation, driving its ¢ down to Neptune’s scattering region (highlighted in red).
Similarly, when the small body’s node precesses at the same rate as the planet, its i
will be pumped to a larger value by the inclination secular resonance.

In the the Solar System, the eight planets influence each other’s orbits in a much
more complex manner. The precession of each planet is composed of a series of
frequencies with varying magnitudes, and each frequency corresponds to a specific

secular resonance. Brouwer & Woerkom (1950) analyzed the secular variations of
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Figure 1.5: Orbital evolutions of two identical test particles under the grav-
ity of a planar and near-circular (exy ~ 0.01) Neptune orbit. These two
particles demonstrate wildly different secular evolution histories, due to
the difference in Neptune’s apsidal precession rates and the secular reso-
nance. Left: With Neptune on a fixed orbit and no apsidal precession, the
secular oscillation of the particle’s eccentricity is so small that it does not
pump the particle to the region where strong semimajor axis scattering
can occur (red highlighted). Right: When an apsidal precession rate very
close to that of the particle (~ 0.68"/yr) is artificially given, Neptune’s
gravity induces a much more powerful e excitation to the small body, de-
spite having the same small initial eccentricity. As shown in the top-right
panel, the secular resonance allows objects initially starting from near-
circular orbits to couple with Neptune and likely get ejected from the So-
lar System eventually.

orbital elements of the eight planets and obtained the eigenfrequencies and eigen-
modes of the Solar System, where ten frequencies for the e~ solution (g;-g10) and
eight frequencies for the i-2 solution f; —fs are given. The corresponding resonances
are often referred as as the v, secular resonance, where the subscript denotes the i-th
value of the eigenfrequency involved (v = g1, ..., V10 = 10> V11 = f1> ---» V18 = f3)-
Secular resonances play vital roles in shaping the structures of small body pop-

ulations. For example, the inner edge of the cold classical Kuiper Belt at ~41 au is
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largely set by the presence of the g resonance, which destabilizes nearby low-e and
low-i TNOs by pumping their e to Neptune-crossing orbits (similar to the orbital
evolution shown in Figure 1.5’ right panel). Additionally, an extra planet’s secular
effect is able to raise perihelia of scattering TNOs and detach them. I will examine
the secular evolution of main-belt TNOs in more depth in Chapter 2, and study the

extra planet’s secular forcing in Chapter 6.

1.2 Numerical Tools

Long-term N-body numerical integrations are playing a vital role in dynamical as-
tronomy. In the context of planetary system dynamics, one of the most common
problems is to study the motion of a large number (N) of low-mass small bodies
under the gravitational field of a central star and several planets (N,) on hierarchi-
cal orbits. While the star and planets need to be evolved considering their mutual
gravities, which requires an algorithm with Nf, complexity, the small bodies can be
treated as massless test particles and thus the calculation expense scales as NN,,.
Once the number of particles greatly exceeds the number of planets, the total com-
plexity is N[Z, + NN, = NN,,.

In this section, I will briefly introduce several frequently-used N-body numer-
ical integrators in planetary dynamics and their underlying algorithms. I will also
talk about GPU Long-term Integrator for Solar System Evolution: Regularized (GLISSER),
a Graphics Processing Unit (Gpu)-based integrator I helped improve based on GLISSE
(Zhang & Gladman, 2022) during my PhD study. This fast and efficient integrator
will be the main numerical tool I use in Chapter 3, 5, and 6 to study various dynam-

ical problems in the Solar System.

1.2.1 Solar System Small-Body Integrators

While generic ordinary differential equations solvers, such as the Bulirsch-Stoer
and the Runge-Kutta algorithms (Stoer & Bulirsch, 1980) can be applied in plane-
tary dynamics, they are not suitable for propagating orbits for millions of years. This
is because most of the generic integrators are non-symplectic, where small numer-
ical errors would lead to the gradual drift in the system’s total energy. Symplectic

methods, on the other hand, conserve the total energy of a Hamiltonian system by
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design. One of the most commonly-used algorithm in solving gravitational N-body
problems is the Wisdom-Holman Mixed Variable Symplectic (mvs) method (Wis-
dom & Holman, 1991), in which the Hamiltonian is split into the following two
terms

H = Hiepler + Hinteraction, (1.25)

where Hepler is the Keplerian term that describes the central force of the star and
thus can be propagated forward by numerically solving the Kepler’s equation (1.9);
Hinteraction 1S the planetary interaction term that updates the planet/particle’s veloc-
ities using the Newtonian accelerations evaluated on their positions. When planets
are far away from each other or test particles are far away from the planets (i.e. no
planet-planet or particle-planet close encounters), the interaction terms are so small
that the problem can be approximately solved through the second-order ‘leapfrog’
time step scheme: a half step following Hepler, followed by successive whole steps
alternately following Hinteraction and Hepler> ending with a half step of Hepler-

When close encounters do occur in the planetary system (when a planet/parti-
cle enters another planet’s Hill sphere Ry, see Equation 3.13), the assumption that
Hinteraction << Hxepler breaks down and the integrator must switch to a planet-
centric reference frame to resolve the close encounter with a much smaller time
step At. Different Solar System small body integrators apply different algorithms
to approach this problem. The SwirFT integrator (Levison & Duncan, 1994) uses
the Regularized Mixed Variable Symplectic (Rmvs) method, which approximates a
test particle flyby with a hyperbola centered about the planet. The SymBA integrator
(Duncan et al.,, 1998) is able to handle planet-planet close encounters by employing
a variant of the standard MVS with a multiple time step technique. The MERCURY
integrator (Chambers, 1999) solves close encounters with the standard Bulirsch-
Stoer method (Stoer & Bulirsch, 1980) while handling the long-term evolutions with
Wisdom-Holman MVS.

A latest and more comprehensive N-body package is REBOUND developed by
Rein & Liu (2012). It is written in both C++ and PyTHON and contains several nu-
merical integrators, such as Bulirsch-Stoer, IAS15 (Rein & Spiegel, 2014), WHEFAsT
(a fast and accurate implementation of the Wisdom-Holman MVS integrator, Rein

& Tamayo, 2015), and MERCURIUS (an optimized implementation of the original
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hybrid symplectic method in MERCURY, Rein et al., 2019b). For comparison be-
tween various symplectic N-body algorithms, one can refer to Wisdom (2016) and
Rein et al. (2019a).

1.2.2 'The GLISSER Integrator

While most of the N-body integrators implement the Wisdom-Holman MVS al-
gorithm on the Central Processing Unit (cpu), the GPU Long-term Integrator for
Solar System Evolution (GLISSE) integrator (Zhang & Gladman, 2022) is an imple-
mentation of the same algorithm but on the GPU, which fully utilizes its capability
of parallel computing. In this section, I will introduce GLISSER, the GPU integra-
tor I helped improve and test based on GLISSE and Kevin Zhang’s extended codes.
GLIssER handles particle-planet close encounters on CPU cores while propagating
thousands of the non-encountering particles on the GPU.

As shown in the flowchart 1.6, the GLISSER integrator primarily consists of two

parts:

1. Grisse on the GPU (green): GLISSER utilizes the GLISSE code as its core to
propagate test particles on GPU using the Wisdom-Holman MVS algorithm
(green component in Figure 1.6). The details of the implementation can be
read in Zhang & Gladman (2022).

2. SWIFT subroutines on the CPU (yellow): GLISSER separates the particles that
are having close encounters from the non-encountering majority. For each
‘time chunk’?, close-encounter particles are handed over to SWIFT subroutines
that resolve encounters on one or more CPU cores, after which they are re-
inserted back onto the GPU.

Unlike most integrators that evolve planets and test particles simultaneously, GLISSER
utilizes a pre-computed planetary history lookup file, in which the Cartesian coordi-
nates of each planet are logged at each time chunk. The advantage is that it can read
a planetary history generated by other programs (where more complex dynamical
effects are considered, such as planetary migration and collision) and only simulate
the small-body distributions shepherded by that history.

*time chunk is the basic unit, of which test particles get sent to GPU and propagated in parallel. It
consists of a few hundred to thousands time steps depend on the problem GLISSER is resolving
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The history file is read at each time chunk and interpolated for every time step.
I helped improve GLISSER’s interpolation algorithm, switching from heliocentric
orbital elements to barycentric ones which greatly reduce the errors in the inter-
polated position vectors. I also expand the code to output the flyby distance and
timing for each close encounter. With several bugs in the original code fixed, the
overall usefulness of GLISSER has been greatly improved.

To illustrate its power, I have run two identical test simulations (on both GLISSER
and MERCURY) and compared their results and execution speed. In both simula-
tions, I put the four giant planets on their current orbits and also a 2 Mg, additional
planet on an orbit with a = 300 au, g = 50 au, and i = 10°. This case is intended to
show that both secular and close encounter dynamics are reproduced by GLISSER.
As a first calculation, 1,000 test particles are randomly generated from a=50 to 600
au with heliocentric q ranging from 32 to 38 au. The simulations were run for 100
Myr with GPU time step of 100 days (during close encounters the SWIFT code may
decrease this time step to resolve a very close planetary passage). In both integra-
tors, the close encounter portion of the algorithm is activated when a test particle
is within 3.5 Ry of any planet. Snapshots at the end of the 100 Myr integration are
shown in Fig. 1.7; the simulations show very similar orbital distributions. Dynam-
ical effects with different timescales, such as particles with g < 38 au being rapidly
scattered in semimajor axis by Uranus and Neptune and the long-range averaged
gravity of the additional planet lifting the perihelia of objects between a=100 to 800
au, are present in both integrators (also shown in the supplemental video). The rate
of particle’s being eliminated (by scattering out to the Oort Cloud with heliocentric
distances beyond 2,000 au, or striking planets) is statistically the same.

Fig. 1.8 shows the results of the aforementioned test-particle initial condition,
but with the much larger particle count of 80,000. There are estimates in the litera-
ture that the retention probability for outer Solar System bodies may be only 10~
~ 1073 (Nesvorny, 2018), so as to have any reasonable statistics it is necessary to to
integrate ~10 initial conditions. Execution times and merit measurement are in
Table A.1. Itis clear that the presence of such a planet imposes significant e (and thus
q) oscillations on objects beyond ~ 150 au, forming a pyramid structure around it-
self on the a — g plot. This gigantic high-q structure is created by the extra planet’s

secular effects, which I will investigate in depth in Chapter 6. Upon closer inspec-
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Figure 1.7: Comparison of the orbital distributions of 1,000 test particles after 100 Myr of simulation time using the CPU

code MERCURY (left panel) and GLISSER (right panel). Planets are shown as red crosses (Jupiter is not indicated),
while particle’s initial conditions are confined in green boxes. Three horizontal dashed lines denote where g = 30
(crossing the orbit of Neptune), g = 38 (roughly the boundary between the scattering and the detached population),
and g = 80 au (the highest perihelion (2012 VPj;3) so far observed).The orbital distributions are obviously very
similar but on this calculation GLISSER is 40 times faster. See Table A.1 for timings.
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Figure 1.8: Same numerical simulation as in Figure 1.7. But instead of inte-
grating only 1,000 test particles, GLISSER is able to propagate 80,000 test
particles in parallel with only ~4 X the integration time. See Table A.1 for
timings. One noticeable feature with a larger sample size is the ‘vertical
spikes” above the g = 38 au red dashed line inside 100 au. Their locations
in a are close to where strong neptunian resonances lie, suggesting that
the temporarily-present extra planet has enhanced the resonant capture
efficiency. This feature is only seeable in simulations with tens of thou-
sands of particles and it demonstrates the necessity of using GLISSER to
study small body orbital distributions in greater details.
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tion, I also notice that in the top a — g panel of Figure 1.8, there are a few ‘vertical
spikes’ above the g = 38 au red dashed line inside 100 au. These features are not vis-
ible in simulations without the additional planet or a vast amount of test particles,
and they seem to suggest the extra planet’s role in enhancing the resonant capture
efficiency. This new dynamical effect coming out of preliminary GLISSER simula-
tions demonstrating its capability has been studied in Huang et al. (2022a) and will
appear in Chapter 5. For additional GLISSER simulations showing the conservation
of the Jacobi constant (Section 1.1.3) and orbital evolution comparisons with SWIFT,

see Appendix A.1.

1.3 'The Known Structures of the Solar System

The history of humanity’s understanding of the Solar System bears witness to the sci-
entific and technological advances of the last few hundred years. Although almost
all ancient civilization knew the existence of the five ‘wandering stars’ (or planétes
asteres in ancient Greek, from which today’s word planet was derived), it was not
until 1781 that a new planet — Uranus — was discovered by Herschel, expanding the
known boundaries of the Solar System for the first time. Motivated by the abnormal
orbital motion of Uranus, the mathematical determination of Neptune’s existence
by Le Verrier (Le-Verrier, 1846b,a) and Adams (Adams, 1846) in 1846 and its sub-
sequent discovery represents one of the most significant theoretical predictions in
the history of astronomy (see a recent review by Krajnovi¢, 2016). This remarkable
discovery further stimulated the search for more planets and solar system bodies,
which led to the discovery of Pluto by Tombaugh in 1930 (see search history for
Pluto in Tombaugh, 1946). This long-sought planet-sized body coincided with the
proposed Planet X by Lowell (1915), and was soon after granted the Ninth Planet of
the Solar System for the next 70 years. The ‘planet’ title of Pluto stood unchallenged
until growing number of Pluto-sized objects were found in the millennium (e.g. Eris
by Brown et al. 2005). This led to the redefinition of Pluto as a ‘dwarf planet’ in the
2006 International Astronomical Union (1aU) General Assembly. The consensus of
eight known planets in the Solar System — Mercury, Venus, Earth, Mars, Jupiter, Sat-
urn, Uranus, Neptune — was surprisingly only established in the past two decades,

and may keep on expanding as our understanding of the Solar System increases.
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Besides planets, the Solar System also hosts a swarm of small celestial bodies
(sometimes called minor planets), including comets, asteroids, icy bodies in the
outer Solar System, planetary satellites, and interplanetary dust. Small bodies are
mainly located in four major reservoirs — the main asteroid belt, Jupiter’s co-orbital
space, the Kuiper Belt (a.k.a Transneptunian space), and the Oort Cloud. These ob-
jects are more frequently known as asteroids if from the inner Solar System, Jovian
Trojans if from the co-orbital space of Jupiter, Trans-Neptunian Objects (TNOs)
if from the Kuiper Belt, and Oort Cloud objects if from the Oort Cloud. They are
thought to be remnant debris from the Solar System’s ancient past. Their orbital dis-
tributions, physical characteristics, and spectral properties provide invaluable tools
for understanding the formation, migration, and evolution history of the planets. In
my thesis, I will use the orbital distributions of TNOs to study the formation history
of the outer Solar System, with a focus on the hypothesis that additional Earth-scale
planet(s) may have existed in the past and left permanent traces in the observed

TNO populations.

1.3.1 Small Body Populations Inside the Orbit of Neptune

Small bodies in the inner Solar System (a < 5.2 au, the orbit of Jupiter) that do
not have cometary activities (e.g. outgassing) are named ‘asteroids. They are rocky
bodies thought to be relics left over from the early formation of the Solar System
about 4.6 Gyr ago. The largest asteroid reservoir is the main asteroid belt, located
between the orbits of Mars and Jupiter, spanning semimajor axis from 2.0 to 3.5
astronomical units (au). It currently holds ~1 million objects with diameter D >
1 km (Bottke et al., 2005) and has a total mass only ~3% of Earth’s moon (Pitjeva &
Pitjev, 2018).

Most asteroids within the belt have orbital eccentricities e < 0.4, and inclina-
tions i < 30°. The vast majority of them are dynamically stable for the age of the
Solar System, as their eccentricities place their orbits away from the orbits of Mars
and Jupiter, where strong planetary close encounters cannot occur (i.e. ‘decou-
pled’). There are also unstable regions embedded in the main asteroid belt, open-
ing gateways for them to escape and couple with planets. Unstable regions in the

main belt are mainly associated with resonances that pump asteroid eccentricities.
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Two particularly important such resonances are the 3:1 MMR with Jupiter (see Sec-
tion 1.1.4) and the v secular resonance (see Section 1.1.5). Dynamical lifetimes
insides these resonances are only a few million years, with the majority destroyed
by being transferred to Jupiter-crossing orbits or being driven into the Sun (Glad-
man et al., 1997). Some of the escaped main-belt asteroids enter the near-Earth
space and form the steady-state Near Earth Objects (NEO) population (Bottke et al.,
2002; Greenstreet et al., 2012; Granvik et al., 2018), of which the recently-discovered
member (594913) Aylé’ chaxnim even has an orbit completely inside that of Venus
(Greenstreet, 2020).

Beyond the main asteroid belt, the Hilda asteroids are a dynamical group in 3:2
MMR with Jupiter (Broz & Vokrouhlicky, 2008). The Jupiter Trojans are a large
group of asteroids that share Jupiter’s orbit and librate around one of the Jupiter’s
triangular Lagrange points L4/L5, which are equilibrium points of the CRTBP (Sec-
tion 1.1.3). Trojans are the majority of Jupiter’s co-orbital, which are asteroids in
1:1 MMR, or co-orbital resonance with Jupiter’. While most of the Jupiter Trojans
are dynamically stable for the age of the Solar System, long-term dynamical integra-
tions show that those along the stability boundaries will escape Jupiter’s co-orbital
region and roam the Solar System (Levison etal., 1997). A recent estimate shows the
total mass the Jupiter Trojans is ~0.08% of the moon (Vinogradova & Chernetenko,
2015), nearly two orders of magnitude smaller than the main belt.

Between orbits of Jupiter (a4 = 5.2 au) and Neptune (a = 30.2 au), almost no
small bodies evolve on long-term stable orbits due to strong gravitational interac-
tions with giant planets. The term ‘Centaurs’ is used to refer to those short-lived ob-
jects whose orbits cross the orbits of one or more giant planets (Jewitt, 2009). Cen-
taurs are a transient population of icy bodies that dynamically link the outer Solar
System’s transneptunian objects with the Jupiter-Family Comets (jrc) and Short-
Period Comets (spc) (Sarid et al., 2019). They only have ~3 Myr mean dynamical
lifetime and the total number of Centaurs with D > 1 km is estimated as ~40,000;
a flux of one new object into the Centaur region from the Kuiper Belt every 125 yr

is required to maintain the steady-state population (Horner et al., 2004).

Except for Trojans that orbit the Sun on tadpole orbits relative to Jupiter, other co-orbital config-
urations include horseshoe orbits, quasi-satellites, and retrograde co-orbitals. See Morais & Namouni
(2017).
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1.3.2 Transneptunian Space

Transneptunian space is the outer region of the Solar System beyond Neptune. In
the last century, this region was more commonly known as the ‘Kuiper Belt, named
after Gerard Kuiper, who envisioned a swarm of planetesimals spreading over a
ring from ~30 to 50 au (Kuiper, 1951). The idea of having a continuing protoplan-
etary disk outside the orbit of Neptune was initially proposed by Edgeworth (1949).
Both Edgeworth and Kuiper’s works were prompted by the discovery of Pluto by
Tombaugh in 1930.

The existence of the conceptualized Kuiper Belt was not verified until more
Kuiper Belt Objects (kBo) were discovered in the late 90s, such as (15760) Albion
(with initial provisional designation 1992 QB,) and 1993 FW by Jewitt & Luu (1993).
Unlike Pluto, which is locked into the 3:2 MMR with Neptune and has moderate e,
these two objects were found to have low-eccentricity orbits and semimajor axes
(a) around 44 au, which were soon realized to be just the tip of the vast Kuiper Belt
population.

Starting around the millennium, various Kuiper Belt surveys have been car-
ried out to find more TNOs. Since then, the population of discovered TNOs has
been steadily increasing, reaching the number of ~4200 as of the year 2022". Ma-
jor contributing surveys include the Deep Ecliptic Survey from 1999 to 2005 that
yielded 382 designated TNOs (Elliot et al., 2005), the Canada-France Ecliptic Plane
Survey (crEPS) from 2003 to 2006 that yielded ~200 characterized TNOs (Jones et
al., 2006), the Outer Solar System Origins Survey (0ssos) from 2013 to 2017 that
yielded ~800 characterized TNOs (Bannister et al., 2018), and the most recent Dark
Energy Survey (DEs) from 2013 to 2019 that yielded ~800 TNOs (Bernardinelli et
al,, 2022). In the next few years, future Solar System surveys like the Legacy Sur-
vey of Space and Time (LssT), run by the Vera C. Rubin observatory, are likely to
discover 40,000 TNOs. This number is an order of magnitude higher than all the
current discoveries combined (Collaboration et al., 2021).

TNOs in different parts of the Kuiper Belt experience different dynamical be-
haviours. Their orbital stability times vary from millions of years to the age of the

Solar System (Gladman et al., 2008). Therefore, dynamical classification is the first

*Data retrieved from JPL Small-Body Database (https://ssd.jpl.nasa.gov/tools/sbdb_query.
html) on September 12th, 2022.
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step towards understanding the long-term evolution and origin of TNOs. Based on
dynamics in the current environment (i.e., all planets on their current orbits and
no extra planet-mass bodies), TNOs are divided into the following four categories
(Fig. 1.9) in the most recent review article by Gladman & Volk (2021):
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Figure 1.9: Known TNOs with dynamical classifications and perihelia beyond
Uranus (¢ > 19.2 au), in barycentric orbital elements. Major mean-
motion orbital resonances with Neptune are marked in the upper left
panel. Figure from Gladman & Volk (2021).

« Resonant: a TNO in a mean-motion resonance with Neptune, which allow
survival even if g < ay ~ 30 au. Example: the 2:1 resonance at a ~ 47 au has
TNOs with twice the orbital period of Neptune.

o Scattering: a TNO for which Neptune can currently significantly alter its
semimajor axis a on timescales < 1 Gyr; typically ¢ < 38 au. This is often
called ‘scattered disk’ in other literature, but this term more precisely applies

to objects which are currently dynamically scattering with Neptune.

« Detached: a non-resonant and non-scattering TNO with a > 47.4 au (the

location of the 2:1 resonance)’.

’In Gladman & Volk (2021), a detached TNO must also have e > 0.24 to separate itself from
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o Classical: a TNO that falls into none of the above categories.

The resonant population is subdivided into different groups based on their res-
onant ratios with Neptune. TNOs with 1:1 MMR with Neptune are also called Nep-
tune Trojans, and those with 3:2 are usually called Plutinos, named after the largest
TNO in the 3:2 population. Asillustrated in Section 1.1.4, MMRs with Neptune pro-
tect TNOs from planetary close encounters, which stabilizes orbits even for TNOs
with perihelia inside the orbit of Neptune (although many resonant TNOs have
q > 30.2 au). The formation mechanism related to the resonant population will
be reviewed in Chapter 4 and studied in 5.

The current scattering population, whose present mass is of order 0.05 Mg, (Tru-
jillo et al., 2000), is the decaying remnant of a giant primordial population with
initial mass of ~5 Mg (Duncan & Levison, 1997) and is most likely the source of
SPCs and JFCs (Dones et al., 2004; Volk & Malhotra, 2008). The dynamical life-
time of scattering disk objects is a few hundred million years, but numerical simu-
lations show that scattering objects are often trapped near the boundaries of a reso-
nant island, a phenomenon known as resonance sticking (Duncan & Levison, 1997;
Gladman et al., 2002; Lykawka & Mukai, 2007). Resonance sticking with Neptune
seems to significantly prolong the dynamical lifetimes of scattering objects (Duncan
& Levison, 1997; Malyshkin & Tremaine, 1999). The dynamical nature and property
of the scattering process will be studied in Chapter 3.

The classical Kuiper Belt is defined as the semimajor axis range between the 3:2
resonance (39.4 au) and the 2:1 resonance (47.7 au). All the non-resonant TNOs
within this a range belong to the classical population. The ‘dynamically cold” pop-
ulation are TNOs from the cold classical Kuiper Belt, with low-e and low-i orbits
from a = 42.5-47.4 au. The current understanding is that they most likely formed
in-situ, keeping their primordial state by remaining largely untouched by planetary
perturbations and collisional evolution (Kavelaars et al., 2021). The hot classicals,
on the other hand, are thought to be transported onto higher-e and i orbits dur-
ing the epoch of giant planet migration (Malhotra, 1995; Morbidelli et al., 2003).

To separate the cold and hot classical TNOs that occupy the same semimajor axis

any potential primordial cold population beyond 47.4 au. Because there is not yet direct evidence to
support the existence of a cold outer disk, I call all non-resonant and non-scattering TNOs beyond
47.4 au detached in this thesis.
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range but originated from different places, an improved method to compute the
‘free inclinations, a conserved quality for classical TNOs, is proposed in Chapter 2.
Moreover, the dynamically unheated (relative to e = i = 0) cold classical belt also
provides a critical constraint on the evolutional histories of planets scattered out
from the giant planet region, which will be discussed in Chapter 5 and 6.

The detached population refers to all non-resonant and non-scattering TNOs
beyond the 2:1 resonance. It was first recognized by Gladman et al. (2002), in which
the term extended scattered disk was first proposed to focus on the existence of those
high-q TNOs that are not experiencing strong gravitational interactions with Nep-
tune, such as 2000 CR;p5 and 1995 TLs. Emel'yanenko et al. (2003) demonstrates
the long-term orbital stability of these objects with numerical integrations, in which
they experience little semimajor axis variations for the entire 4-Gyr integration time
(their figure 2). Later-discovered Sedna (Brown et al., 2004) also has perihelion so
large (g ~ 76 au) that it cannot have been emplaced by only the four giant plan-
ets. Delsanti & Jewitt (2006) first used the word detached to describe TNOs that
are currently away from Neptune’s scattering and resonant dynamics, and this was
adopted by Gladman et al. (2008). Their emplacement might have been due to per-
turbations associated with extra bodies, either from a planet or a passing star, which
will studied in Chapter 5 and 6.

The entirety of hot TNOs, including the scattering, resonant, detached, and hot
classicals, is often called the ‘implanted’ population.It is thought that these objects
formed interior to 30 au and were implanted at their current locations by planetary
migration and potentially other external perturbations. The process of the implan-

tation will be overviewed in Chapter 4 and studied in Chapter 6.

1.3.3 Oort Cloud and Comets

A comet is an icy small Solar System body that, when passing close to the Sun,
warms and begins to release gases, which produces a visible coma and sometimes
a tail. Comets have relatively short lifespans, due to their orbital instability and
volatile depletion during near-Sun perihelion passage (Fernandez, 1981; Levison &
Duncan, 1994). Historically, known comets have been classified into two groups

based on their orbital periods P: spc, defined as those having P < 200 yr, and
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Long-Period Comets (Lpc), whose P > 200 yr. The orbital inclinations of LPCs
are nearly isotropic, whereas SPCs have inclinations strongly concentrated toward
prograde orbits.

There are two primary comet reservoirs in the Solar System: the scattering disk
for SPCs (see Section 1.3.2), and the Oort Cloud for LPCs. Oort (1950) first sug-
gested a distant spherical and isotropic comet cloud to explain the apparent over-
abundance of LPCs with a > 10* au in the catalog. While the observable Oort
Cloud hypothesized by Oort himself starts at tens of thousands of au, a more popu-
lous inner reservoir is required to replenish the observable Oort Cloud (Hills, 1981).
This came to be known as the inner Oort Cloud, ranging from 2,000 to 20,000 au
(Weissman, 1990).

Duncan et al. (1987) first used numerical simulations to show the formation of

the Oort Cloud (inner + outer) is mainly driven by a two-step dynamical processes:

1. The planetary perturbations (mainly from Uranus and Neptune) scattered ob-

jects to large semimajor axis a at nearly constant perihelion distance g;

2. Those objects that went beyond a few thousand au had their g raised nad Q
shrunk at fixed a by the galactic tidal field and/or stellar encounters, making

comets exit the planetary region and forming the Oort Cloud.

Duncan et al. (1987) also estimated various timescales involving the building of
the Oort Cloud (their figure 2). It was shown that the boundary of the inner Oort
Cloud is determined by the diffusion timescale for planetary perturbations and the
tidal torquing timescale from the Galactic disk, where ~2,000 au is the distance
at which the two timescales are equal. The boundary between the inner and the
observable Oort Cloud of 220,000 au is set by the tidal torquing timescale and the
comet’s orbital period (also see Figure 3.2 in Section 3.1 for details). Estimates for
the Oort Cloud’s current mass and primordial implantation efficiency are highly
uncertain (Portegies-Zwart et al., 2021), and I will come back to formation of Oort
Cloud in Chapters 4 and 6.
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1.3.4 Other Stable Niches in the Solar System

In addition to the regions which are dynamically stable for 4.5 Gyr and are known
to host small-body populations, there are a few dynamical niches that numerical
studies have shown to be stable for the age of the Solar System but which have no
known members with demonstrated 4 Gyr stability.

The first such established case is for the ‘Uranus-Neptune’ belt near 26 au. Glad-
man & Duncan (1990) demonstrated some stable orbits for their 22.5 Myr maxi-
mum integration time, which Holman & Wisdom (1993) pushed to 800 Myr and
demonstrated continued survival for this time. Holman (1997) extended the inte-
gration time to 4.5 Gyr, and found 0.3% of initially near-circular and near-planar
orbits between the orbits of Uranus and Neptune (24-27 au) survive for the age of
the Solar System. Zhang & Gladman (2022) thoroughly explored this region, prov-
ing 4.5 Gyr stability. There are still no known bodies discovered in the stable region
(despite great sensitivity to them in trans-neptunian surveys), and Holman (1997)
and Brunini & Melita (1998) argue that by the end of giant planet formation, it is
likely that no bodies would remain at low e and i in this region.

Evans & Tabachnik (1999) mapped stable orbits in a hypothetical belt between
Earth and Mars (a = 1.08-1.28 au). They investigated the structure of those two
belts in greater detail with 100 Myr simulations, exploring the role of mean-motion
resonances with terrestrial planets, as well as the 5 and ¢ secular resonances, in
sculpting the belts (Evans & Tabachnik, 2002). In my study (Huang & Gladman,
2020, which is not part of this thesis), I demonstrated the Earth-Mars belt is only
stable over 4.5 Gyr timescale over a restricted region of @ = 1.09-1.17 au and this
low-e and low-i region is nearly unreachable by the continuous flux of NEOs from
the main belt. The fact that it is unoccupied today provides an additional constraint
to terrestrial planet formation models.

Based on numerical integrations of hypothetical Earth Trojan asteroids, Tabach-
nik & Evans (2000) demonstrated 50 Myr orbital stability of these objects and spec-
ulated by extrapolation of the decay rate that some orbits could survive for the age of
the Solar System. Earth co-orbitals in horseshoe orbits (that is, not librating around
a single Lagrange point like Trojans, but instead encompassing three points) have

even longer stability time (~Gyr) than Earth Trojans have (Cuk et al., 2012). It may
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be thus more likely to find a primordial Earth horseshoe (Zhou et al., 2019), but all
known Earth co-orbitals (of any type) have much shorter dynamical lifespans than
the Solar System’s age (see references listed in Greenstreet et al. 2020). Recently,
Zhou et al. (2019) concluded that the dynamical erosion over 4 Gyr, especially when
accounting for Yarkovsky drift, would eliminate a population of sub-km primordial
Earth co-orbitals surviving to the present day, but that km-sized could survive. Di-
rect observational searches by Ye et al. (2020) and Markwardt et al. (2020) provided
no Trojan detections down to sizes of a few hundred meters, leading to the conclu-
sion that it is unlikely that any Earth Trojans still exist.

Thus, simply demonstrating that the dynamics permit a portion of phase space
to be stable does not imply that a population currently exists; again, the perturba-
tions inherent in planet formation likely resulted in no large stable Earth co-orbitals
being present at the end of planet formation. The only temporary Earth Trojan 2011
TK7 (Connors etal., 2011) is dynamically unstable and not consistent with a primor-
dial origin. The known co-orbitals of the Earth are best explained as temporarily
trapped near-Earth asteroids (Morais, 2002).

Inside Mercury’s orbit, the hypothesized population of small bodies, known as
the Vulcanoids, was first proposed by Weidenschilling (1978). Evans & Tabachnik
(1999) numerically studied the stability of the intra-mercurial region and found that
the dynamical niche where Vulcanoids may exist is from 0.09 au to 0.21 au. How-
ever, accounting for Vulcanoid evolution under the Yarkovsky thermal force shows
that objects with the diameter <1 km would be removed over the age of the So-
lar System (Vokrouhlicky et al., 2000). A recent search for Vulcanoids with NASA’s
STEREO spacecraft (Steftl et al., 2013) returned no detection, and thus the existence

of Vulcanoids larger than 5.7 km in diameter was ruled out.

1.4 Thesis Outline

In this thesis, I will concentrate on exploring dynamical puzzles in trans-Neptunian
space to better understand the formation and evolutionary history of the Solar Sys-
tem. In Chapter 2, I analyze the free inclinations of TNOs in the main Kuiper Belt,
offering insight into their primordial inclination distribution. In Chapter 3, I exam-

ine a possible origin for the power-law distribution of semimajor axes for scattering
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TNOs. Chapter 4 provides an introduction to planet formation and the early his-
tory of the Solar System. In Chapter 5, I conduct a detailed investigation of the weak
encounter effect of a hypothesized rogue planet, which was temporarily present in
the early Solar System, on the resonant and detached TNO populations within the
Kuiper Belt at a < 100 au. In Chapter 6, I elaborate on the rogue planet model and
offer a more comprehensive study of the rogue planet’s possible dynamical histories.
This model, based on numerical integrations, aims to explain several long-standing
puzzles in the outer Solar System, including the production of large-a and high-gq
TNOs like Sedna. In Chapter 7, I discuss potential improvements to the current

study and explore new opportunities emerging from the findings of this thesis.
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Chapter 2

Free Inclinations for TNOs in the

Main Kuiper Belt

There is a complex inclination structure present in the Trans-Neptunian Object
(TNO) orbital distribution in the main classical belt region (between orbital semi-
major axes of 39 and 48 au). The long-term gravitational effects of the giant plan-
ets make TNO orbits precess, but non-resonant objects maintain a nearly constant
‘free’ inclination (I, ) with respect to a local forced precession pole. Because of the
likely cosmogonic importance of the distribution of this quantity, we tabulate free
inclinations for all main-belt TNOs, each individually computed using barycentric
orbital elements with respect to each object’s local forcing pole. We show that the
simplest method, based on the Laplace-Lagrange secular theory, is unable to give
correct forcing poles for objects near the /3 secular resonance, resulting in poorly
conserved I, values in much of the main belt. We thus instead implemented an
averaged Hamiltonian to obtain the expected nodal precession for each TNO, yield-
ing significantly more accurate free inclinations for non-resonant objects. For the
vast majority (96%) of classical belt TNOs, these I values are conserved to < 1°

over 4 Gyr numerical simulations, demonstrating the advantage of using this well-

This chapter is based on the following published work: Y. Huang, B. Gladman & K. Volk, Free In-
clinations for Trans-Neptunian Objects in the Main Kuiper Belt. The Astrophysical Journal Supplement
Series 259, 2 (2022)
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conserved quantity in studies of the TNO population and its primordial inclina-
tion profile; our computed distributions only reinforce the idea of a very co-planar
surviving ‘cold’ primordial population, overlain by a large I-width implanted ‘hot’

population.

2.1 Introduction

The outer region of our Solar System beyond Neptune hosts a large swarm of icy
bodies that are planetesimals left over after the planet formation era. They contain
valuable information about the Solar System’s distant past.

Over the past two decades, there is growing consensus that current transnep-
tunian objects may have accreted from different regions in the protoplanetary disk:
the cold population likely formed locally around a ~ 44 au and hasn’t experienced
significant subsequent dynamical excitation or collisional evolution, whereas the
hot population likely formed closer to the Sun (a < 30 au) and was implanted at
the current locations during the late stages of planet formation. These two popula-
tions are mixed in the main Kuiper Belt (42 < a < 47 au) radially and vertically,
with the inclination being a rough proxy to separate them (see Gladman & Volk
2021 for a detailed review).

Brown (2001) first fit the inclination distribution of all classical TNOs (i.e. main
belt TNOs not in mean motion resonances with Neptune) using a functional form of
sin] multiplied by a sum of two Gaussians consisting of a cold component (of width
~2.2°) and a hot component (~17°). Levison & Stern (2001) noticed the observed
cold population lacks large objects, which was later further confirmed by several
independent Kuiper belt surveys showing the cold population has a significantly
steeper absolute magnitude (H) distribution than the hot population (Bernstein et
al., 2004; Elliot et al., 2005; Fraser et al., 2010; Petit et al., 2011; Kavelaars et al.,
2021). The perihelion distance distribution of the cold population is more confined
than those of the hot (Petit et al., 2011). The cold classicals are also known to have a
higher abundance of binary TNOs (see, e.g. Noll et al., 2020), especially those with
comparable sizes. Furthermore, a statistically significant correlation between the
color and inclination of the classical objects has been observed, with low-inclination

objects more likely to be red and high-inclination objects likely to be more neutral
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in color (Doressoundiram et al., 2002; Trujillo & Brown, 2002; Doressoundiram,
2003; Peixinho et al., 2008). High-precision colors from optical and near-infrared
observations have demonstrated that the cold classicals have different surface prop-
erties than the hot members (Pike et al., 2017b; Schwamb et al., 2019; Miiller et al.,
2020; Fernandez-Valenzuela et al., 2021). All of these properties are consistent with
the two populations having distinct formation histories. As a result, the orbital dis-
tributions, especially the inclination distributions, of the two populations shed light
upon their dynamical past and deserve detailed investigation with the most recent
sample.

A common practice in TNO research is to split the classical TNOs into hot and
cold populations with a simple inclination cut to facilitate, for example, physical
property studies of the two populations or comparisons between observationally
derived population estimates and those from dynamical models.

For example, Bernstein et al. (2004), Petit et al. (2011) and Fraser et al. (2014) all
used a cut of I < 5° in ecliptic inclination to identify a dominantly cold population,
while Peixinho et al. (2008) used 12°. The ecliptic I, however, varies over time as
an artifact of the reference frame choice: a TNO’s orbit precesses around its local
forcing pole with a fixed I and a constant frequency, the result of which, in ecliptic
space, is a non-constant precession (sometimes not even a precession but a confined
oscillation in the longitude of ascending node €2) with a varying I (see section 7.4 of
Murray & Dermott 1999 or figure 1 of Gladman & Volk 2021). This naturally makes
Ifree» @ conserved quantity regardless of the choice of reference frame, preferable to
the ecliptic inclination, which is the commonly tabulated quantity and useful for
orbit comprehension.

We note that because the real classical belt TNO distribution is a sum of two
overlapping components that each have different inclination widths, there will al-
ways be some level of contamination when using a simple cut (see figure 2 of Daw-
son & Murray-Clay (2012), for example). Cutting in It rather than ecliptic I, how-
ever, dramatically improves how well the two components are isolated.

Van-Laerhoven et al. (2019) showed that when using a free inclination cut of
4°, the cold classical TNOs are best fit with a narrower width of ~1.75°, strongly
limiting its past perturbation. Gladman & Volk (2021) also found this cut results in

a cleaner separation in TNO colors (their figure 6). Because of this superiority, the
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4° cut in free inclination is also adopted in Kavelaars et al. (2021).

With today’s large TNO sample, including survey data from the Canada-France
Ecliptic Plane Survey (CFEPS, Jones et al. 2006), the Deep Ecliptic Survey (Adams
etal., 2014), the Outer Solar System Origins Survey (OSSOS, Bannister et al. 2018),
and the Dark Energy Survey (Bernardinelli et al., 2022), it is thus desireable to com-
pute Ife. for each main belt TNO. To do this, the local forcing planes or the forcing
poles, relative to which I is measured, must be correctly calculated. Brown & Pan
(2004) first realized the apparent mean plane of the TNOs differs significantly from
the Solar System’s invariable plane (the plane defined by the average angular mo-
mentum of the larger planets). In contrast, Elliot et al. (2005) found the mean plane
of the classical TNOs is more consistent with the invariable plane than with the local
Laplacian plane (the latter being the plane perpendicular to the local forcing pole
discussed below). In a subsequent study, Chiang & Choi (2008) investigated the
theoretically predicted locations of forcing poles, pointing out that the classical belt
plane is significantly warped by the 15 secular resonance near a = 40.5 au; i.e., the
local forcing plane in the main belt changes significantly with semimajor axis. They
also confirmed the conservation of TNO free inclination with respect to their cal-
culated time-variable poles for 4 Gyr, but only for objects away from the singularity
associated with the secular resonance.

Given that the calculation of the forcing poles (and thus the free inclinations)
is somewhat complicated near secular resonances and that a non-negligible portion
of the classical belt is affected by this, a better approach to calculating free incli-
nations is warranted. In the present work, we implement a new method based on
doubly averaging the Hamiltonian to obtain the expected nodal precession rates and
the correct forcing pole for each TNO. The free inclinations generated by this new
algorithm represent a significant improvement over those given by the often-used
linear secular theory, especially for objects within a few au of the 13 secular res-
onance singularity (see Section 2.2.2). We thus tabulated the correct I, of each

main-belt TNO along with its barycentric orbital elements in Table 2.1.
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2.2 Computation of Free Inclinations

Because of the cosmogonic significance of the cold and hot populations, both for the
dynamical structure of the transneptunian region and the interpretation of surface
properties inferred from photometry and spectra, we chose to compute and pub-
lish TNO free inclinations. Because as a population the cold objects exist only in the
main belt between the 3:2 and 2:1 mean motion resonances with Neptune, our inter-
pretation is that this component split is only sensible in this semimajor axis range
(objects that might have low inclinations at other semimajor axes are best inter-
preted as the low-I tail of the implanted hot component’s inclination distribution);
we thus confine ourselves to the main belt objects in this work. In Section 2.2.1,
we describe how we selected the observed TNOs to include in our analysis. Sec-
tion 2.2.2 describes our approach to calculating free inclinations, and Section 2.2.3
demonstrates that the newly calculated free inclinations are a better-conserved quan-

tity than those calculated using linear theory.

2.2.1 Dynamical Classification of TNOs

We began by downloading the most recent sample of main belt TNOs from the
Jet Propulsion Laboratory Small-Body DataBase (JpL sBDB)'. We constrained the
heliocentric semimajor axis a to the range of (39.4,47.7) au and the 1-sigma un-
certainty in a to da < 0.1 au. This a range is the region between the 3:2 and the
2:1 neptunian MMRs, which is frequently referred to as the ‘main Kuiper Belt” in
literature (e.g., Gladman & Volk, 2021). We also added two additional TNOs to the
sample: 486958 Arrokoth (2014 MUgg), the target TNO visited by the New Hori-
zons spacecraft on Jan. 1, 2019 (Stern et al., 2019) whose orbit-fit accuracy is not
accurately reflected in JPLs database, and 2005 JY g5, an OSSOS object whose a un-
certainty given by JPL is slightly above the 0.1 au but our own estimate is da ~ 0.05
au (Bannister et al., 2018). This resulted in 2018 objects being selected.

The JPL SBDB provides orbital elements in the heliocentric IAU76/J2000 eclip-
tic reference frame. However, for the study of TNO dynamics, barycentric orbital
elements are preferable to heliocentric ones. TNOs are relatively far away from the

Sun, and the small wobbling of the Sun’s position under planetary perturbations

"https://ssd.jpl.nasa.gov/sbdb_query.cgi, retrieved on October 5th, 2021.
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(mainly from the giant planets) leads to variation of TNO heliocentric orbital ele-
ments on timescales of each giant planet’s orbital period (Gladman & Volk, 2021).
The barycenter of the Solar System, on the other hand, is far more stable in the eyes
of TNOs. As a result, orbital elements in this paper and the appended table are all
barycentric elements.

These TNOs are distributed across the whole main classical belt, starting from
the 3:2 neptunian mean-motion resonance (a = 39.4 au) and ending at the 2:1 res-
onance (47.7 au). Several low-order resonances are also embedded in the main belt,
the most important of which are the 5:3 (42.3 au), the 7:4 (43.7 au), and the 9:5
(44.6 au). We classified the 2018 TNOs in our sample according to their current
dynamical state (Gladman et al., 2008), separating the classical TNOs from the res-
onant objects and the scattering objects (note that by definition detached objects
have a > 47.7 au, therefore they cannot be in this sample). To do this, we integrated
the best-fit orbit for each TNO forward 10 Myr in time under the influence of the
Sun and the four giant planets. We used the MERCURIUS algorithm within the RE-
BOUND orbital integration software package (Rein & Liu, 2012); this algorithm uses
REBOUND’S WHFAST symplectic integrator (Rein & Tamayo, 2015) for the majority
of time steps and the adaptive-stepsize 1as15 integrator (Rein & Spiegel, 2014) to
resolve close encounters between test particles and planets. We used a base time
step of 0.25 years and an output interval of 1,000 years for these integrations.

After the integration, the TNO classification was carried out manually: each
particle’s a, eccentricity (e), and critical angle for the closest resonance (i) are plot-
ted. A human operator then decided to tag it as scattering (a alters more than 1 au),
resonant (p ceases to circulate at any moment in the 10 Myr integration), or classi-
cal (for a non-scattering and non-resonant particle). Although recent papers have
described TNO classification using automatic pipelines (Khain et al., 2020) or ma-
chine learning algorithms (Smullen & Volk, 2020), we decided to do the job manu-
ally as the sample was not too large and this remains the most accurate method. Our
criterion for resonant objects is quite loose; this is motivated by the fact that even
a brief interaction with a mean-motion resonance can significantly alter I, (see
Section 2.2.3). For the resonant identification, we searched through resonances i : j
withi =1...20andj = 1...20 in the a range of (39.4,47.7) au, which includes
23 distinct resonances with the 20:11 being the highest-order one.
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Among the sample of 2018 objects we integrated and classified, 66% (1332/2018)
are classical, 31% (622/2018) are resonant, and only 3% (64/2018) are scattering.
These percentages have biases and should not be interpreted as the intrinsic or cos-
mogonic dynamical distribution in this semimajor axis range’. Note that our TNO
classification is conducted with the purpose of better presenting our results in the
next section; it should not be treated as the ‘definitive’ classification for these objects

because we are not considering orbital uncertainties by integrating clone orbits.

2.2.2 Free Inclination with the Correct Precession Rate

In Laplace-Lagrange secular theory, the barycentric inclination vector (also called
the orbit pole) of a TNO (typically measured from the ecliptic plane) constantly
rotates around its local forcing pole under the perturbations of planets. When per-
turbed by a single planet, an object’s forcing pole is constant and simply perpen-
dicular to the planet’s orbital plane. However, when perturbed by multiple planets,
the local forcing pole constantly changes with time. The time-dependent location
of the forcing pole is predicted by the Laplace-Lagrange secular theory, which gives

the following rectangular components of the forcing pole

q = IcosQ?,
(2.1)
p = IsinQ},
at any given semimajor axis induced by the orbits of all planets:
= IfreeC0s (Bt + 7¥) + Gforced (t),
q free ( 7) qfo ced( ) 2.2)

p= Ifreesin (Bt + 7) + pforced(t)a

where I, is the free inclination, B denotes the expected precession rate of the small
body’s node, and ggorceq and prorceq are components of the forcing poles imposed by

planetary perturbations (see Section 1.1.5). In the present work, only the four giant

*In particular, many of the scattering objects in this semimajor axis range have perihelia well inside
of Neptune and were only detected with their faint absolute magnitudes because of their small current
heliocentric distances; they are thus over-represented in our sample compared to the classical and
resonant objects with brighter absolute magnitudes.
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planets are taken into account, so the resulting forced terms are given by

8
Xi
Qforced(t) - Z B _]fCOS(]?t—}— ’Y])?
j=5 J

8 (2.3)
Xio .
pfOrced(t) = - E ijfSIH@t—F ")/J),
j=5 J

where j denotes the index of the inclination eigenfrequencies/eigenvectors (f; and
Ij; below) of the Solar System. In Laplace-Lagrange secular theory, B is the summa-
tion of precession rates contributed by each planet (B;), which depend on both the
planetary and the small body’s semimajor axes (a; and a).

For TNOs in the main belt (where aj = aj /a < 1 always holds), B, B;, and Xj

are given by:

1 mj 1
B = ZM—Qna-bg/)z(aj),
8
B=— ZSBj, (2.4)
]:

8
j=5

where m; is the mass of the j-th planet, and # is the mean motion of the small body.

0

32 («yj) is the Laplace coefficient (Equation 1.23).

The Laplace-Lagrange secular theory predicts a nodal precession rate for each
TNO, under the assumption that both the planets and the TNOs have near circular
and planar orbits. As a result, the forced inclination Ifq and the longitude of
ascending node 2¢yq are both functions of the semimajor axis only.

Chiang & Choi (2008) showed that in the main classical belt, the forcing poles
at various semimajor axes form a line in (g, p) space, rotating around the location of
the Solar System’s invariable pole with a 1.9 Myr period. As the semimajor axis goes
to infinity (although in practice needs only a > 45 au), the forcing pole approaches
the invariable plane pole and is therefore fixed.

A TNO’s current osculating orbital inclination is a sum of this locally forced in-

clination and its free inclination (also sometimes called the ‘proper’ inclination, see
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Figure 2.1: Left panel: Polar and rectangular coordinate depiction of the eclip-

tic (orange), the forced (red), and the resultant free (blue) inclination vec-
tors of a TNO in the main classical belt. For this object, the forcing center
(red cross) rotates around the Solar System’s invariable pole (black cross)
with a ~2 Myr period, the path of which is the black dashed circle. The
free inclination (blue) vector rotates around the time-varying forcing cen-
ter at a constant nodal precession rate B, keeping its magnitude If.. un-
changed. The composition of these two movements gives rise to a more
complicated inclination evolution in the ecliptic reference frame (orange
vector with arrow denoting its approximate sense of motion). Right
panel: The difference between a 4° cut in ecliptic inclination (orange cir-
cle centered at origin) and a 4° cut in free inclination (blue circle centered
at the forcing pole). Three TNOs with almost identical forcing centers are
marked in blue crosses, with light blue being colds object (I < 4°) and
dark blue being the hot object (I, > 4°). If one were to use ecliptic
inclinations to split the populations, 472231 (2014 FU7;) would be mis-
classified as cold while 2015 GHsg (see Figure 2.4) would be misclassified
as hot. TNOs in the overlapping area will maintain I, < 4° and are cor-
rectly classified currently but some with I, > 2°, such as 2014 UY s,
will cycle to ecliptic I > 4° on Myr timescales.
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Equation 2.2). By calculating and then subtracting the forced pole from an object’s
ecliptic inclination, the resultant free inclination vector components are obtained.
The magnitude of the free inclination vector is I, and the phase provides the free
ascending node (.. In Figure 2.1, we illustrate the geometric relationship between
the ecliptic (orange) inclination, the forced pole (red), and the free (blue) inclina-
tion in the rectangular (q, p) space. We also refer the reader to Gladman & Volk
(2021)’s figure 1 and their supplemental video for more details.

In theory, the free inclination of a non-resonant, non-scattering object is con-
stant over time. The conservation of If.. at 38.6 au and at 43 au for 4 Gyr has been
verified by numerical integrations (Chiang & Choi, 2008). However, we find that
near the v;g secular resonance at a = 40.5 au, the I, of TNOs calculated by the lin-
ear theory are not conserved even over our much shorter 10 Myr integrations. Fig-
ure 2.2 shows the barycentric ecliptic a and I evolutions (blue curves) of 2014 QUs5
as well as its If.. calculated by the linear theory (red dotted curve). To compute
the linear secular If.. evolution of this object over our simulation, we recalculate
the eigenmodes of the Solar System at each time output, based on the constantly-
evolving orbits of the 4 giant planets (using the method described in Murray & Der-
mott 1999) and use those to determine 2014 QU5 s forced plane and thus free incli-
nation. As shown in Figure 2.2, the linear theory I, of this object is not conserved
at all; its amplitude even exceeds the variation of its osculating ecliptic inclination.

The varying If. computed from linear theory near a = 40.5 au demonstrates
that the forcing pole is not correctly predicted near the secular resonance. The rea-
son for this failure is that in the linear theory, the expected precession rate (B in
Equation 2.4) of a TNO is only a function of its semimajor axis. The real nodal pre-
cession rate, however, also depends on the object’s eccentricity and inclination. Ig-
noring high-order terms in e and I produces an inaccurate precession rate, resulting
in the incorrect determination of its forcing pole. This effect is particularly strong
near a secular resonance, due to the fact that the term B — Jj (where JS is an eigen-
frequency) exists in the denominator of the forcing pole expression (Equation 2.3).

To get the correct I, especially near the 3, we adopt a semi-analytical method
to recalculate the correct precession rate at every time step. It's based on numerically
averaging the TNO’s Hamiltonian over two ‘fast angles’ (called the double average

method hereafter), which avoids any truncation in powers of the small body’s ec-
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centricity and inclination (Williams, 1969). This approach has been commonly used
in Solar System studies (Henrard, 1990; Morbidelli & Henrard, 1991; Froeschle &
Morbidelli, 1994; Michel & Froeschlé, 1997), in order to compute the locations of
secular resonances over a large range of e and I. We summarize the major steps
to obtain the correct precession rates (B and B;) using the double average method
(see Michel & Froeschlé 1997 and chapter 8 of Morbidelli 2002 for more complete
details).

Assuming all the planets to be on co-planar circular orbits and the gravitational
constant G = 1, the Hamiltonian / of a TNO perturbed by the j-th planet can be

written as
1
H = —07 1iP; (L, G, H,Lj;1,g,h, 1), (2.5)
—— ~
erp HS(Q:

where Hy,, is the integrable Keplerian motion of the TNO around the Sun and ”Hs(é)c
accounts for the planetary perturbation by the j-th planet, in which p; = Gm; and
P; is the normalized term that only depends on the Delaunay variables (defined in
1.11). Assuming the TNO is not trapped inside a mean-motion resonance, then the
secular Hamiltonian Hs(’e)c can be averaged over the two unrelated fast angles, / and

l; (a ‘double average’), which yields
ﬂg?) = _M]7)j (G7 Ha & h) ) (26)

To write the averaged Hamiltonian in explicit form (1.15):

21 2
0 _ // 1 I
Heee = — — dldil;, (2.7)
@2l Jo (Hr—rﬂl 511 !

in which the vectors r and r; denote the heliocentric positions of the small body

and of the j-th planet, respectively, and A; = r — r;. Under the approximation

that eccentricities and inclinations of the planets are zero, one of the integrals can
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be analytically computed using the complete elliptic function of the first kind K:

27 1 I"I'j) /271' 1 4 n
- A= | ——dli= ———— /1 - 2K(n),
/0 (”r—rj’ Isl° ) Jo (A JPAa 2

(2.8)

where

4aj\/x* + 2

n= (2.9)

r + af + 2aj,/x? +2’

and x and y are the coordinates of r’s projection on the plane of the planetary orbit,

with r = ||r||. It is worth noting that Equation 2.8 has the physical interpretation of
the potential from a homogeneous ring (averaging the Hamiltonian over a planet’s
mean anomaly J; is equivalent to spreading out the planetary mass on a circular ring

of radius a;). Combining Equation 2.7 through 2.9, we have

r2+a]2

21
=—(j i 1—-n/2
Al =-4 [ i,
™ Jo
3 (2.10)
ﬂsec = Zﬁge)m

J=5

where Hs. is the Hamiltonian accounts for the total planetary perturbations. The
expected nodal precession rate contributed by each planet B; and the total precession

rate B can thus be obtained through numerical differentiation

77 ()
B = KB — %’
OH
8 (2.11)
B=-> B

and the resulted B; and B are not only functions of a and a;, but also functions of
e, I, and w. Replacing the nodal precession rates from Equation 2.2 to 2.4, we get
the correct forcing pole (Gforceds Pforced) and thus the correct I for each TNO.

In summary, the double average method calculates the precession rate as a func-

tion of g, e, I, and w, instead of just 4 as in the linear theory. As a result, the method
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Figure 2.2: Blue curves: barycentric a (top panel) and ecliptic I (bottom panel)
evolution of 2014 QUj; o over 10 Myr. The orange dashed line in the upper
panel marks the semimajor axis of the 4 secular resonance for circular
and planar orbits. Red curves: I calculated by the linear theory (dotted
curve) and the semi-analytical double average method (solid curve). The
ranges of the blue curve, the dotted curve, and the solid line are 3.2°,
14.4°, and 0.06°, respectively.; the double average method yields a much
better-conserved value of If..

produces a rate closer to the TNO’s true precession rate, and thus a more accurate
forcing pole and a better conserved free inclination. Taking the object from Fig-
ure 2.2 as an example: the linear theory predicts a nodal rate of —0.63"yr, which
is very close to the f = —0.68"yr inclination eigenfrequency of the Solar System
(Brouwer & Woerkom, 1950). In contrast, the real precession rate according to nu-
merical integration is only —0.206"yr, which is much closer to what the double av-
erage method predicts (a rate varying between —0.19”yr to —0.21”yr as the orbit

evolves). The ~40° inclination makes the TNO precess slower than a planar orbit
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of the same g, pulling itself away from the 1,5 secular resonance despite being near
a = 40.5 au. Obviously, the double average method provides a more accurate pre-
cession rate, resulting in a much better conserved I for the TNO (red solid line

in Figure 2.2).

2.2.3 Free Inclination Results

We applied both the linear theory and the double average method to the calculation
of I for each of the non-scattering TNOs in our sample. Figure 2.3’s upper panel
shows the double-averaging If.. as a function of a. To illustrate the conservation
of Ifee over 10 Myr timescales, the bottom panel shows the variation, I, range
= max(Ifee) — min(Ifee), over the integration for both methods. The If.. range
values show that, as expected, near the v resonance at 40.5 au, the linear theory
fails to produce a well-conserved I, (red crosses in Figure 2.3), whereas even near
the secular resonance our method (blue dots) provides free inclinations that are as
well conserved as for the rest of main-belt classicals. The vast majority of classi-
cals have I, conserved to better than 1°, although this is not the case for resonant
objects (orange dots) and a handful of near-resonant objects. Because the averag-
ing method doesn’t take into account the Hamiltonian’s resonant terms, it cannot
predict the correct nodal precession rate for objects affected by the mean motion
commensurabilities. As a result, TNOs near and in the 3:2 and the 5:3 resonances
have a significantly large I, range (bottom panel of Figure 2.3). The 7:4 resonance,
however, hosts TNOs with both large and small I, ranges; the latter group are all
objects with relatively small eccentricities (e < 0.15) and the vast majority have
Ifree < 10°. Higher-order resonances in the main belt seem to have no clear effect
on the object’s I range, presumably due to their relatively weak strength.

Figure 2.3’s lower panel aligns with our expectations: classical TNOs not af-
fected by resonant dynamics generally have very small I, variations, while res-
onant TNOs (especially those in strong, low-order resonances) have significantly
large If... ranges. In other words, in Figure 2.3’s upper panel, only for the classical
objects (blue dots) can If.. be trusted to be cosmogonically relevant.

If we limit our scope only to the classical TNOs in the I, — a distribution, there

are a few things worth pointing out:
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Figure 2.3: Upper panel: Our computed values of current Ig.. for each TNO

as a function of its barycentric semimajor axis a (note the log scale on the
y-axis). Resonant objects are shown in orange and classical TNOs in blue,
with light blue and dark blue denoting classical TNOs with I, < 4° and
Ifree > 4°, respectively. The dashed curves in the lower left portion of the
plot give the center of the vg (black) and v;g (gray) secular resonances,
with curves on the left being e = 0 and those on the right being e = 0.1
(see text). Bottom panel: The range in calculated I, values (log scale)
over our 10 Myr integrations as a function of a. For objects with a ~
39.7-42.5 au, the proximity of the v;5 secular resonance results in the
TNO’s expected precession rate being dramatically incorrect, resulting
in widely-varying values of Ig.. when calculated using the linear theory
(red crosses). When the nodal precession rate for non-resonant TNOs is
corrected (using the double average method), well-preserved free incli-
nations are obtained for the classical TNOs (blue dots); resonant TNOs
(orange dots) can have highly-variable values for their calculated I, even
with the double average method because the resonant dynamics are not
accounted for.
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Figure 2.4: Evolution in a (upper panels; blue curves), ecliptic I (lower panels;
blue curves) and If.. (lower panels; red curves) over 10 Myr for classical
TNO 2015 GHsg (left) and resonant TNO 119956 (2002 PA49; right).
The classical TNO has initial J2000 I > 5°, but its I, is always less than
4° (see also Figure 2.1’s right panel). The resonant object is in the 7:4
resonance and its I, (as calculated by the double average method) is not
conserved; this is expected because neither linear secular theory nor the
double average method is appropriate for resonant TNOs.

1. Almost every classical TNO between the 3:2 and the 5:3 neptunian resonances
has I larger than 10°, due to the presence of vg and v; g secular resonances in
the low-I region. The v resonance will excite eccentricities for lower-I orbits
to Neptune crossing, resulting in TNO removal. We computed the positions
of these resonances (gray and black dashed curves) by iteratively converging
(for a given e) to the resonant secular frequency (gg or f) by varying Ig..; the
e = 0.1 curve is very similar to those shown in Knezevi¢ et al. (1991) and
Morbidelli (2002).

2. The 8:5 resonance might be viewed as surprisingly devoid of TNOs, leaving
a semimajor axis gap in the hot population at a = 41.2 au. We integrated five
of the 8:5 resonant objects to 4 Gyr; none of them survives for the age of the
Solar System, with a median dynamical lifetime of only 700 Myr. None of
the real objects is thus deeply embedded and stabilized by the mean-motion
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resonance for the age of the Solar System. Given that the nearby third-order
7:4 resonance does not deplete on this same timescale (even at large If..), this
contrast seems puzzling. It is plausible that the proximity to the two secular
resonances is contributing to this instability, but may instead imply some-
thing about capture into this resonance out of the abundant ancient scattering

population.

3. There is a few-degree wide sparsely populated region in the free inclination
distribution (sitting just above I, = 4°) in the semimajor axis range be-
tween the 5:3 and the 7:4 resonances in the main belt. This ‘gap’ is nearly
devoid of TNOs and exists only in the If.. space; it would be completely hid-
den if one were to plot the distribution using ecliptic I. This explains why
Van-Laerhoven et al. (2019) found isolating If.. < 4° is an excellent way to
reduce contamination between hot and cold, minimizing interlopers when
measuring the width of the cold population’s inclination distribution. We

expand upon this in the Discussion section.

To show how the resonant dynamics affects I, we plot (Figure 2.4) the orbital
evolution of an object (119956 = 2002 PA49) trapped in the 7:4 resonance with
moderate e ~ 0.17 and a nearby cold classical TNO (2015 GHsg). Despite main-
taining a relatively low ecliptic inclination, the resonant object’s calculated free in-
clination is extremely variable (right panel of Figure 2.4) because the assumptions
underlying the linear secular or the double average I, calculation are not valid for
resonant objects; this highlights why we needed to classify our TNO sample prior
to determining free inclinations. In contrast, the classical TNO in the left panel of
Figure 2.4 demonstrates why If.. is superior to the ecliptic inclination in separating
objects into cold versus hot populations: 2015 GHsg is an object with a 5.3° ecliptic
inclination currently, which would place it in the hot population according to most
ecliptic inclination cuts. In addition, the 10-Myr average of its ecliptic inclination is
4.4°, still above a typical 4° cut. However, our calculation shows its free inclination
is only 3.69° with a range of 0.25°, which keeps it always below a 4° cut and thus
always a cold object.

We demonstrated above the conservation of Ig.. for classical objects over 10

Myr timescales. But what one truly cares about is whether I, is stable for the age
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Figure 2.5: Al measured across a 4 Gyr integration as a function of
barycentric a for main-belt classical TNOs. The blue and red dots rep-
resent I < 4° and I > 4°, respectively. The majority of TNOs in
both categories have values of I, that are conserved to within 1° even
over 4 Gyr.

of the Solar System. In other words, will the current I, of classical TNOs reflect
their I, ~4 billion years ago, at end of the giant planet formation and migration/-
transport to their present-day orbits? To answer this, we extended the numerical
integrations of the observed objects for 4 Gyr and plotted the surviving particles’
Alfe. (the absolute difference between each object’s current I, and that at 4 Gyr)
in Figure 2.5. The vast majority of classical TNOs, no matter what their current in-
clinations are, have Alf.. < 1°. The very few outliers are mainly distributed around
major mean-motion resonances, indicating some occasional interactions with the
resonances during the 4 Gyr evolution in which the secular conservation is lost.
Figure 2.5 thus shows that the If.. distribution we compute today for the classical

TNOs can be taken to be representative of the primordial distribution.
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Last but not least, we also explored the idea of whether the (easily calculated)
mean ecliptic inclination from numerical integrations can serve as a good proxy for
Ifree. We find that for classical TNOs whose If... > 4°, the mean ecliptic inclination
over 10 Myr is a good approximation to If.., with the median absolute difference
being only 0.2°. However, in the cold population (I < 4°), the median absolute
difference is 0.6°, which renders the mean ecliptic inclination a low-quality esti-
mate of the free inclination for this population (see the example discussed above
from Figure 2.4). Moreover, we point out if one intended to study the main belt’s
inclination distribution through the mean ecliptic inclination, this averaging would
result in all objects with I, smaller than the local forced inclination being assigned
a mean ecliptic inclination of roughly the forced value of about 2°; the distribution
of very low Ig.. objects would be completely erased. These same arguments apply
if one tried to use the invariable plane as the reference (rather than the ecliptic);
the cold population’s median absolute inclination difference is still 0.5°. It is thus
superior to use I computed by the double average to studying the main belt’s in-

clination distribution.

2.3 Discussion

As a summary, the free inclination distribution we have computed for the main belt

(Figure 2.3) illustrates several points:

1. The innermost boundary of the cold population at a =~ 42 au is being set by
the existence of the secular resonances. The absence of low-I TNOs here does
not imply that the cold belt did not exist here before the giant planets finished
formation and migration. How and when these secular resonances reached
their current location is a subject of much speculation (e.g. Batyginetal. 2011,
Dawson & Murray-Clay 2012, Gladman et al. 2012, Nesvorny 2018, Baguet

et al. 2019, and references therein)

2. The double averaging method removes the apparent forced-inclination sin-
gularities that occur in the linear secular theory. If one wished to study the
secular effects of additional planets on the ancient or current structure of the
Solar System (e.g. Volk & Malhotra, 2017; Batygin et al., 2019), this method
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is to be preferred to estimate the inclination perturbations produced by the

planet.

. The preservation of the If.. calculated via this method over 4 Gyr allows us
to study the ancient inclination structure of the belt (that is, the structure
existing at the end of the the planet formation epoch). This reinforces the
idea that there was a cold (I < 4°) population present at that time which
(atleast in the a < 44.5 au region of the main belt) is well separated from the

presumably implanted hot population.

. The main-belt TNO population clearly has multiple superposed components
(see Brown, 2001, and citations to it) and, because there is evidence that these
components have different physical properties due to different formation lo-
cations, there needs to be some way to easily separate observed TNOs for
spectrophotometric studies. Due to the narrow width of the cold compo-
nent, TNOs with large ecliptic inclinations (larger than 10°, say) will almost
all be from the hot component with very few interlopers. At small inclina-
tions, the majority of the TNOs will be from the cold population, with the
interloper fraction depending on the component I distributions and relative
populations. The often-used but still reasonable 5° cut in ecliptic inclination
to separate the cold and hot components was proposed by Bernstein et al.

(2004), although no justification for that particular value was given.

Here we have demonstrated the superiority of using a cut in I, to isolate the

hot and cold populations. Van-Laerhoven et al. (2019) found that the cold popu-

lation is tightly confined (in If..) around the local forcing pole; this is especially

true in the inner part of the main belt, where they found the cold population has

an inclination width of just ~1.8°. Figure 2.6 shows histograms of ecliptic and free

inclination for the non-resonant main belt TNOs in this work. The low-I peak in

the free inclination histogram is sharper than in the ecliptic histogram, and there

is a noticeable drop-off in the observed population at I, = 4° (roughly twice the

cold population’s inclination width). We note that observational biases are not ac-

counted for in Figure 2.6, though they were accounted for in Van-Laerhoven et al.

(2019)’s analysis of the cold population’s inclination width. Based on that inclina-
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Figure 2.6: A fractional histogram of free inclinations (blue bars) and ecliptic
inclinations (red outlines) for 1450 main-belt classical TNOs beyond the
5:3 resonance (a > 42.3 au). Only a few such objects (not shown) have
> 40° inclinations. Note that because most TNO surveys have been con-
ducted at relatively low latitudes, there is an observational bias against the
large-inclination TNOs; thus the high-TI tail in this histogram should not
be taken to represent the true hot TNO inclination distribution. How-
ever, the dramatic spike at low inclinations (which is due to the cold pop-
ulation) is still clear in the observed population, and even more obvious
in the I, histogram (which is shifted towards zero due to the true secu-
lar dynamics of the belt). A 4-degree cut is shown by the vertical line; few
TNOs in the 0-4° range would be hot-population interlopers.
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tion width and our analysis here, we suggest that I, < 4° is a reasonable choice
when using a simple cut to separate the hot and cold populations in the main TNO
belt.

2.4 Data Release

The purpose of this work is to provide tabulated barycentric orbit elements and I
for the currently observed main classical belt TNOs as a resource for studies com-
paring the hot and cold populations. We do this in Table 2.1. We identify each TNO
in our sample by their primary Minor Planet Center (Mpc) designation, but we also
include OSSOS++ and DES designations for objects that appear in either survey so
that one could more easily use the survey simulators of those surveys for quantita-
tive de-biasing. The absolute magnitude H in Table 2.1 is taken from the JPL Small
body database; we note that these H values use approximate color transformations
and should not be used with the survey simulators mentioned above as they are not
linked to a specific filter.

In addition, to help the reader quickly estimate the correct I, for future TNOs,
we provide Table 2.2, in which the forcing pole components (g, p) are pre-computed
ina (a, e, I,w) 4-dimensional grid. We also provide a Python script to read the file
and find the closest data point for any given orbit, which the reader can then use
to estimate the I, that would be given by the double average method. However,
it's important to note that this simplified approach of evaluating If.. can only be
trusted if the TNO:

1. is a non-resonant and non-scattering object within the given orbital ranges,

2. stays away from the v;g secular resonance (in other words, the forcing pole is

relatively small), and

3. has a current inclination computed at the current epoch.

We have tested the file and confirmed that for TNOs that meet these three require-
ments, this script yields I to a precision of ~0.1° compared to that computed by
double average.

With accurate values of I and the knowledge of a cleaner separation between

hot and cold population with a 4° boundary in this variable, one can use our tabu-
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Table 2.1: Barycentric elements and I, for main-belt TNOs

Column names Units Descriptions
a(a) au Semimajor axis of the nominal orbit
e(e) Eccentricity
I(inc) deg Inclination
Q2 (Omega) deg Longitude of ascending node
w (omega) deg Argument of perihelion
M (M) deg Mean anomaly
d(dist) au Distance from the barycenter
H (H) mag Absolute magnitude

Dynamics flag: -1 for scattering, 0 for
non-resonant/classical, > 0 for the exactly

RESO g0
resonant ratio (e.g. 74’ stands for the 7:4
mean-motion resonance with Neptune)
L. (Ifree) deg Free inclination, computed via double

averaging
Free inclination range over 10-Myr
integration time
q component of the forcing pole.

Ifee range (ITreeRange)  deg

florced (q Forced) deg Gforced = I forcedCOS(Qforced)
p component of the forcing pole.
Porced (p Forced) deg Pforced = IforcedSin(Qforced)
05505 OSSOS++ internal designation (‘X for
non-OSSOS++ objects)
DES internal designation (‘x” for non-DES
DES .
objects)
ID downloaded from JPL Small-Body
Database: For a numbered TNO, ID gives its
ID designated number; For an unnumbered
TNO, ID gives its compact provisional
designation
Name Full name (designation in bracket)

Note. The first six orbital elements and the distance are barycentric and in the
IAU76/J2000 ecliptic reference frame, referring to epoch JD 2459400.5. Both I,
and I range are independent of the choice of reference frame. The absolute mag-
nitude H, id and full name are directly retrieved from JPL on October 5th, 2021;
these values could change as the MPC receives additional observations. This table
is available as a downloadable, machine readable file at https: //yukunhuang.com.
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Table 2.2: g, p components of the forcing pole for various orbital elements

Axis names Range Grid sizes Dimensions
a (39.4,47.7) au 0.1 au 84
e (0,0.25) 0.01 26
I (0, 40) deg 2 deg 21
w (0,90) deg 10 deg 10
Total Size 458,640

Note. In the double average method, the forcing pole vector is a function of
(a,e,I,w). For each data point on grid, we gives the g, p components of the forcing
pole in degrees, which can be used to estimate the It of nearby orbits. w is only in
the range of (0, 90) deg due to its two-fold reflection symmetries in both the orbital
plane and the central axis.

lated If. values to reduce the occurrence of cross-contamination between the two
groups in photometric and spectroscopic studies of those populations whose goal is
to constrain primordial TNO surface properties. Lastly, we provide a rapid method
allowing anyone to easily estimate the correct I, for future TNO discoveries in the

main Kuiper Belt.
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Chapter 3

Steady-state Distribution of the
Scattering Disk

The TNO orbital distribution provides constraints on the early migration history of
the giant planets. In Chapter 2, I established the primordial free inclination distri-
bution of main-belt TNOs, which can also be used to differentiate the cold classicals
from the hot component in this region. In this chapter, I turn my attention to the
semimajor axis distribution of the implanted non-resonant TNOs, including hot
classicals in the main Kuiper Belt and detached TNOs beyond 50 au.

The CFEPS survey first discovered that a continuous dN/da o a2 power law
could account for the entirety of the implanted population within 100 au (Petit et al.,
2011, their figure 8). Beaudoin et al. (2023, submitted to PSJ) measured the semi-
major axis distribution of the detached sample from the OSSOS survey, concluding
it follows a2 all the way to at least ~200 au. These results suggest that these hot
Kuiper Belt components are a single dynamical population that formed around the
same time.

The power-law nature in a of the implanted TNOs begs the following questions:

1. What is the physical interpretation and implication of the a power law?

2. Is a=2* the expected steady-state distribution of scattering TNOs, which are

thought to be the ‘primordial source’ of the implanted populations?

To answer these two questions, I first summarize relevant literature about comet
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dynamics in Section 3.1, where the expected a distribution of ecliptic comets was
derived using a diffusion equation. In Section 3.2, I approach this problem from
a completely different perspective: the patched-conic approximation that is com-
monly used in flyby dynamics. The patched-conic model surprisingly reaches the
same steady-state distribution as the diffusion approximation. In Section 3.3, I esti-
mate the diffusion coefficient and timescale analytically, and I confirm the validity
of the power law and the analytically-computed scattering timescales through nu-
merical integrations in Section 3.4. Section 3.5 discusses possible applications of

my results.

3.1 Comet Dynamics and the Diffusion Approximation

One of the early results of planetary scattering dynamics appears in comet dynam-
ics, in which comets with extremely large semimajor axis (200 < a < 20,000 au)
were studied under planetary perturbations, stellar encounters, and the galactic tide.
Duncan etal. (1987) studied the timescales of the three dynamical effects, and estab-
lished the idea that the formation of the current comet cloud (inner + outer Oort
cloud) was driven mainly by an interaction between planetary perturbations and
torquing due to galactic tides. In this paradigm, planetary perturbations first sent
cometary objects to large a with almost constant g, and torques from the galactic
tide then lead to changes in g, raising objects from the giant planet region to the
Oort cloud.

To estimate timescales for planetary perturbations, Duncan et al. (1987) adopted
an energy-diffusion approximation model from Yabushita (1980), in which ecliptic
comets (with sufficiently large a and planet-coupled q) random walk in energy space
(x = 1/a ') at each perihelion passage (Figure 3.1). The exact locations of giant
planets during the comet’s closest approach is not modeled, instead, the diffusion
coefficient D, which denotes the root-mean-square energy change per encounter
with given g and 7, determines the diffusion speed or scattering efficiency by the
ensemble of planets. In the Solar System, D increases as q drops due to stronger
planetary interactions (Duncan et al., 1987, figure 1).

Under this approximation, Yabushita (1980) shows that if n(x, t)dx is the num-

""The special energy in the two-body system has the form of —1/(2a) (Equation 1.6).
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Figure 3.1: An ecliptic comet has near-parabolic orbit with sufficiently large
semimajor axis a and specific orbital energy x slightly greater than 0 (solid
curve). In the energy-diffusion approximation of the comet dynamics
(Yabushita, 1980), the comet experiences a random energy kick Ax in the
scattering zone (yellow), regardless of the planets’ exact locations (dashed
circles).

ber of comets at time ¢ with energies in the range (x, x + dx), then # satisfies the

diffusion equation

on 1 *(nx/?)
o 5\/9707, 3.1)

where x is an arbitrary initial energy with corresponding dimensionless time unit

T = t/tp(xo), where the diffusion timescale is

_ P(x)x* 27 [x
=T =T/ (62

where P(x) is the orbital period. In practice, the diffusion coefficient is mostly de-

pendent on g, but also depends on i. In this model, g and i of the comet are assumed
to remain constant, and thus D is constant also.

The solution of the diffusion equation (3.1) for a delta-function initial distribu-
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tion n(x,t = 0) = d(x — xp), corresponding to all comets at a single initial energy
Xo, is given by (Yabushita, 1980)

1/4
n(x, t) = iexp [8 <1 + xﬂb [16 <x> ] , (3.3)
xT T X0 T \ X0

where I, is the modified Bessel function of the first kind, which can be computed

using
Zz e (izz)k
Note that
lim I, (z) ~ 22/8, (3.5)

z—0

when t — 00, z — 0 and Equation (3.3) indicates the number density function can
be simplified to
lim n(x,t) ~ x %2, (3.6)

t—00

whereas the total number of objects N(¢) at given time is given by
N(t) = / n(x, f)dx. (37)
0

Atlarge times, lim;_, o, N(t) ~ t~2 (Yabushita, 1980; Malyshkin & Tremaine, 1999).
The comet’s removal is mainly due to the lossy boundary condition at x < 0 in the
diffusion, corresponding to objects getting ejected from the Solar System.
Equation (3.6) gives the steady-state’ energy distribution for comets only inter-
acting with planets. Given x = 1/a, to convert this into a semimajor axis distri-

bution, one uses the transformation dx = —da/a®. Therefore, the steady-state a

*T use the word ‘steady-state’ here to describe an constant relative distribution. The total number
of objects N(t) in the steady-state distribution decays steadily.
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distribution under the diffusion approximation is

dN  dN|dx

da ~ dx |da

N <1) . (3.8)
pe

which is one index shallower than the a=2-> power law observed in the implanted

I

Kuiper Belt. In other words, there are observed to be relatively more TNOs at
smaller a compared to the expected steady-state distribution that would eventually
result from pure planetary perturbations.

Duncan et al. (1987) computed several relevant timescales for the evolution of
Solar System comets. This includes the planetary scattering diffusion timescale tp

and the perihelion torquing timescale from the galactic tide ¢;, which are given by

1
Y 104au\2 /10 % au1)?
fr r
b Y a D ’

Aq \ [25au)\? [10*au)>
tg = 13 Myr )
10 au q a

where the diffusion coefficient D for a given g and i can be evaluated numerically
(e.g. figure 1 in Fernandez 1981; Duncan et al. 1987; Malyshkin & Tremaine 1999),
and t, gives the timescale on which the galactic tides change perihelion distance by
Ag.

I reconstruct figure 2 from Duncan et al. (1987) in Figure 3.2, with a ranging

(3.9)

from 3 to 50,000 au. Equation (3.3) also indicates the timescale for the number
density to approach the x> (a~!°) steady state is tp, which decreases with semi-
major axis as fp & a9 for constant D (blue lines in Figure 3.2). To estimate
the timescales for initially near-circular and co-planar small bodies near a planet to
reach their steady-state distributions, I plot four lines corresponding to perihelia at
the four giant planets, on which the black circle marks the diffusion timescale for ini-
tial circular orbits at each planet: ~70 kyr for Jupiter-scattered, ~2 Myr for Saturn-

scattered, ~100 Myr for Uranus-scattered, and ~500 Myr for Neptune-scattered
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Figure 3.2: Diffusion timescales tp for various perihelion distance g are plotted
as a function of a (Equation 3.2). The solid, dash-dotted, dotted, and
dashed blue lines, from top to bottom, correspond to Neptune, Uranus,
Saturn, and Jupiter-coupled orbits, respectively. The black circle on each
line marks the tp for initially circular heliocentric orbits near that planet.
P(a) is the orbital period (orange). t, is the tidal torquing time from the
galactic disk for Ag = 10 au and g = 30 au (black), whose intersection
with tp (g ~ 30) naturally defines the boundary between the Kuiper Belt
and the Oort cloud. The age of the Solar System (4.5 Gyr) is indicated by
the red horizontal line. Adapted from Duncan et al. (1987)’s figure 2.

objects. The diffusion coefficients used to calculated these timescales are directly
obtained from Duncan et al. (1987)’s figure 1, assuming g = 5, 10, 20, 30 au, respec-
tively. The black line in Figure 3.2’s top-right corner represents the tidal torquing
timescale for Ag = 10 au, starting at g = 30 au; this amount of g lifting is enough
to remove a particle from strong planetary coupling. The intersection between t,
(black) and tp (g ~ 30, solid blue) at several thousand au roughly defines the bound-
ary between the Kuiper Belt and the inner Oort cloud, and the intersection between
ty and P(a) (gold) at ~ 20, 000 au defined the boundary of the Oort cloud.

In conclusion, under the diffusion approximation, the scattering process is mod-
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eled as random walks in energy space x with constant D. Note that this approxima-
tion only holds if the scattering orbit is assumed to have fixed g and i (therefore
constant D), which may not be the case in reality (see the next section for more
discussion). Figure 3.2 shows that the scattering disk should have reached the a=!-
steady-state distribution at ~500 Myr. This is one index shallower than the observed
implanted Kuiper Belt. I will discussion cosmogonic implications of this disagree-

ment in Chapter 6.

3.2 A Patched-Conic Point of View

In this section, I try to approach the same problem from a completely different per-
spective — the patched-conic approximation — which is often applied in spacecraft

trajectory design. I show that under some simple assumptions, the a=!->

power law
is a natural outcome after multiple flybys of the perturbing planet homogenize the
directions of planetary relative-velocity vectors (V). This provides a physical in-
terpretation (at least in the patched-conic model) for the steady-state distribution
of scattering objects.

The patched-conic formalism is only unequivocally defined when the small body’s
orbit intersects the planet’s; in other words g < ap at all times. To begin with, we
consider the following CRTBP model, where the planet orbits the Sun on a circular
orbit of radius 1, and the particle is on a planet-crossing orbit with semimajor a,
eccentricity e, and inclination i. For i &~ 0° orbit, the two phase angles w and €2 do
not influence the dynamics due to symmetry and thus can be dropped.

As shown in Figure 3.3, when the particle has a close encounter with the planet
at the intersection r = ps the relative velocity vector V o is the vector subtraction

between the two heliocentric velocities
Voo = Vcross - Vp- (3‘10)

Defining the positive apex angle between V, and V., as 6, one obtains the following

relationship by applying the cosine formula

2
Vcross

=V + VIZ, — 2V Vycos(m — 6),

(3.11)
=V + Vf, + 2V Vycost),
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Figure 3.3: In the planet-crossing case, the particle’s perihelion on its orbit
(black) is inside that of the planet (gray). A planetary close encounter
can only happens at r = a, (black cross), where V ¢ (black vector) and
V,, (gray vector) are the particle and the planetary heliocentric velocity
vectors at the intersection, and Voo = Vo5 — V) (red vector) repre-
sents the particle’s relative velocity with respect to the planet. § denotes
the positive apex angle between V, and V ., ranging from 0° to 180°.

The magnitude of the particle’s crossing velocity Vi s is directly linked to its semi-
major axis a by the vis-visa equation (1.5, where yt = 1,7 = 1, and Veross = Veross/ Vp

is the particle’s speed in units of planet’s heliocentric speed.)
=2-- (3.12)

where ata — 00, Veross — V2 ° which is the escape speed at the planet’s heliocentric
orbit.

Now, let’s study the flyby dynamics in the planet-centered frame and temporarily
ignore the Sun’s gravity. This approximation is valid if the flyby object is well inside

the planet’s Hill sphere (Ry) *, where it experiences a stronger gravitational force

’In this chapter, I use the capital letter V to denote dimensional velocity and the lowercase v to
denote velocity in units of planet’s heliocentric speed.

*Note that in spacecraft dynamics, the sphere of influence Rsor = r,(m,/ Mo )¥/5 isalso commonly
used. It is shown below that the choice of sphere does not affect the results.
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from the planet than from the Sun. The Hill sphere of a planet is given by (Hill,

1878)
Ry = 1y —— 3.13
B 3My’ (3.13)

where m,, is the planet mass and r, is the heliocentric distance. Inside the planet’s
Hill sphere, the object’s path can be approximated as a hyperbolic trajectory with v,
being its incoming planetocentric speed. The term v infinity is used here because it
describes the ‘velocity at infinity’ for the hyperbolic trajectory. Although the relative
speed at intersection is not exactly the velocity at infinity in the eye of the planet,
it is a decent approximation as long as the mass of the planet is much smaller than
that of the Sun (m,/Ms < 1).

As shown in Figure 3.4, a hyperbolic planet flyby can only do one thing: reori-
entating the v, vector without changing its magnitude. This can be immediately
understood using the conservation of orbital energy (Equation 1.6) in the planet-

centric frame ,

2
Vooin _ Hp _ Voout _ Hp
2 Ry 2 Ry’ (3.14)
Voo,in = Voo,out)

where p1, = Gmy, is the gravitational parameter of the planet. The direction and
amount of Af depends on exactly where the object enters the planet’s Hill sphere
(i.e. the impact parameter b and its location), which is extremely sensitive to the
exact flyby timing. For example, if the red trajectory in Figure 3.4 were to enter the
hill sphere on the left side, the resultant reorientation of v is in the opposite direc-
tion. If the object and the planet are not in any mean-motion resonance, the flyby
timing is essentially random, which results in significant differences in subsequent
orbital elements and naturally introduces a highly random factor - A - into this
problem.

If voo = v/2 — 1, one can see from Figure 3.5 that at 0 = 0, Veross = V2 (vp is
also set to 1 for simplicity), which is the escape velocity at r = 1. Consequently, if
Voo > V2 — 1, a forward ‘loss cone (derived below) will open on the unit sphere,
where particles can escape from the planetary system.

Therefore, it is reasonable to model the scattering problem from a different per-

spective: each planetary close encounter forces a random walk in 6, reducing a when
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Figure 3.4: Diagram for a planetary close encounter in the planet-centered ref-
erence frame. In the patched-conic model, an object entering the planet’s
Hill sphere (dashed circle) can be approximated as a hyperbolic flyby,
with the incoming speed equal to the outgoing speed. The B plane is
defined as the plane that crosses the planet and is perpendicular to the
incoming v in. The impact parameter b is the ‘unperturbed’ closest dis-
tance between the incoming velocity and the planet. Each planetary flyby
causes in a change in v.’s direction (represented by A#) without modi-
fying its magnitude, the result of which is changes in the object’s orbital
elements (see also Figure 3.5).
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Figure 3.5: Velocity vectors, v, Voo, and Veress before and after a planetary
close flyby. The relative velocity vo’s magnitude does not change as a
result of the encounter, but its orientation does, with the direction and
amount of change set by the details of the flyby. If the particle’s direction
when leaving the Hill sphere is more aligned with the planet’s velocity
vector v, (6 drops), the flyby increases heliocentric a, and vice versa.

6 increases or boosting a when 6 decreases (Figure 3.5). As a result, v, rotates ran-
domly but is confined to remain on a circle centered on the tip of v, giving rise to
the change in the heliocentric velocity vector (Equation 3.11) and thus orbital ele-
ments. The magnitude of the relative velocity v+, not only is a constant before and
after a single close encounter, but also keeps its length unchanged for all the plane-
tary flybys. To demonstrate this, one examines the Jacobi integral Cy (1.16) and the
Tisserand parameter 7 (1.17) atr = 1:

!/ /

1_
CJ!r:1=1+2< 1“+Z>v§elz’r, (3.15)

where v, = Voo and (Burns et al., 2022)

e V3T, (3.16)

where the relative velocity is in the unit of the planet’s heliocentric circular speed
and the 7 < 3 condition corresponds to that of orbit crossing in the co-planar case.

Equating Equation (3.11) with (3.12), one gets a one-to-one mapping from 6 to
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a (or x) as
1
_=x= 1 — 2v5c0s6 — VX,

(3.17)

The vast majority of objects scattered by a planet have 2.5 < 7 < 3 (e.g. Jupiter-
Family Comets (JECs), see Levison & Duncan, 1997), thus the typical v, ranges
from 0 to v/2/2 (3.16). I plot a as a function of 6 in Figure 3.6. Depending on the

value of v, the scattering problem can be divided into the following five cases:

L e\oss |
108 7 : :
‘ Bloss ‘ Voo =0.2
— V=04
Voo= V2 —1
2 — Vo=0.5
10 Vo= V2/2
101 ¢
100_ = ettt 9_:_alp_
0 20 40 60 80 100 120 140 160 180

8 (deg)

Figure 3.6: Dimensionless a as a function of # for various v, (all units are
in terms of the planet’s value). The horizontal dashed line marks a =
ap. In a loosely-coupled case (gray and black), there is a maximum a
the particle can reach in the planet-crossing state. For the boundary case
Voo = V2 — 1 (orange), @ — 0° corresponds to a — oo and § = 102°
corresponds to a = a,. In closely-coupled cases (blue), the object will
escape the Solar System once 6 < )., which is defined in Equation 3.21.
A larger v, corresponds to a bigger loss cone (red line segments).

1. Diffusion case: v, undefined (7 > 3).

The small body and the planet’s orbits do not intersect. Either the small body
is completely outside the planet (g > a,) or completely inside (Q < a,). The

patched-conic approach fails.
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2. Loosely-coupled case: v < v/2 — 1, for which V8 < T < 3.

1757 a=ap T=V8 — T=30

T=292 — T=32
1.50 1

1.25 1

1.00 1

q/ap

0.75 1

0.50 1

0.25 1

0.00 1

100 10' 102
ala,

Figure 3.7: Constant 7 curves on the a-q space (3.19), assuming i = 0°. In the
large a limit, the perihelion g asymptotically approach the value (7 //8)?
(gray dashed lines). For T < V8, lim,_s o0 q < 1 and the particle can
never decouple from the planet in the co-planar case (curves in blue). For
T > /8, limy_eo q > 1 and spontaneous decoupling when the particle
reaches large a is required (yellow and red curves). Equation (3.19) is
partially undefined near the planet for 7~ > 3 (blue). The loosely-coupled
case and the closely-coupled cases defined in text are separated by the
critical value of 7 = /8 (orange), which has g — a, asa — co. The
vertical dotted line marks where a = a,.

Each 0 € (0°,180°) corresponds to a unique value of a (gray and black lines

in Figure 3.6), with the maximum set by

1

PP 2 (3.18)

Omax =

The maximum semimajor axis, however, is only the upper limit for the patched-

conic assumption. In practice, the particle can still raise its a above ap,x and
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escape from the Solar System; this is accomplished when encounters raise

q > ap, which breaks the patched-conic formulation.

One can see a condition on this outward escape route from the Tisserand

parameter. Re-writing Equation 1.17 asa function of a and g (assuming i = 0)

T:%+21/q(2—g), (3.19)

and whena — oo

lim 7 =24/2q,
a—
7\2 (3.20)
li =(—=] .
atroo 1 <\/§>

I plot values of g as a function of a for a wide range of 7 in Figure 3.7. For
V8 < T < 3, a co-planar orbit is coupled with the planet at lower a while
uncoupled at larger a, which is why I labeled it as the loosely-coupled case

(see the yellow curve in Figure 3.7).

To show that an initially-crossing object can indeed spontaneously uncross
the planetary orbit, I show in Figure 3.8 one example of a Neptune-scattered
particle with 7" = 2.9. When a < g, (in this case a < 30 au, denoted by the
gray dashed line), the scattering particle’s aphelion Q (orange dots) is close
to Neptune, whereas when it gets scattered outward (a > a,), its perihe-
lion g (blue dots in the lower panel) is close to Neptune. Spontaneous orbital
detachment occurs at a 2 110 au, consistent with Figure 3.7’s analytical pre-

diction °.
3. Closely-coupled case: V2=1<ve < V241, forwhich —v/8 < T < /8.

When the relative velocity is greater than v/2 — 1, if the small body’s heliocen-
tric velocity vector after a flyby, it can exceed vcross = V2, the escape velocity
at r = 1. The object is then ejected from the planetary system when the con-

dition 6 < 6. is satisfied, which is denoted as a loss cone on Figure 3.5’s unit

>Specifically, the semimajor axis beyond which an orbit has g > a4 can be analytically computed
by solving Equation 3.19 (assuming g = 1). For the 7" = 2.9 scattering particle shown in Figure 3.8,
this occurs at @ = 3.74a, ~ 110 au.

71



150 W
=) ...-"\-\ ~ Rt

>
=100
@© .

501

35.01

— 32.5
=

@©
o 3007 e
~

S 2759

25.01
0 10 20 30 40 50 60 70
Time (Myr)

Figure 3.8: Dynamical evolution of a Neptune-scattered test particle with 7" =
2.9 (loosely-coupled case) integrated in the strictly 2D case. The bottom
panel shows its aphelion (Q) and perihelion (g) evolutions, in which spon-
taneous orbital detachment from Neptune (defined as g > a,, the gray
dashed line) occurs when a = 110 au.

circle. The opening angle of the loss cone 6 is given by

2
—v
Oloss = arccosTOO, ifveo > V2 — 1. (3.21)

Voo
This can also be generalized to the 3D case, where instead being confined to
an unit circle,v,, moves around on a unit sphere, and the angle 6}, defines a
3D loss cone in which orbits are unbound. Additionally, in the closely-couple
case, the maximum ¢ is always inside the orbit of the planet (blue curves in
Figure 3.7), and the small body can hardly uncross the planet’s orbit unless it

gets ejected.

4. Critical case: vo, = v/2 — 1, for which 7 = /8.

The critical value of 7 = +/8 has ¢ — a, ata — oo (orange curve in Fig-
ure 3.7). The small body’s orbit can never decouple from the planet and there

is no loss cone for the critical case. This serves as a separatrix between the
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loosely-coupled and the closely-coupled cases.

5. Unbound case: vo, = v/2 + 1, for which 7 = —+/8.

This case corresponds to Veross > /2 for all #. All orbits are all unbound.

As shown in the above discussion, the patched-conic approximation is not al-
ways valid for the scattering problem, especially in the loosely-coupled case where
the small body can slightly raise its perihelion when getting into large-a orbits. In
the trans-Neptunian region I'm interested in, most of the objects in the current scat-
tering disk are loosely coupled with Neptune, namely 7y > /8. However, I dis-
covered that a Taylor expansion can be made at the critical value of vo, = V2 -1,
which leads to the simple a~ !+ distribution at large semimajor axis.

Equation (3.17) gives a one-to-one mapping from 6 to a (or x). Therefore, any
presumed 6 distribution will naturally result in an a (or x) distribution. Since the
amount and direction of # change is a highly randomized parameter which does not
depend on 6 itself, it is reasonable to assume that any initial  distribution (e.g. a
0(0) function corresponding to all orbits initialized at the same 6) will eventually
approach a steady-state uniformity.

Supposing the expected steady state for 6 is a uniform distribution from 0 to 7
(that is, AN = Kd#), one obtains the steady-state x distribution

dN ‘ (3.22)

2voosm0
where K is a normalization constant that doesn’t affect the shape of the distribution.
Replacing 6 with x using Equation 3.17, one obtains a function of x and v, that

is expandable around x = 0 and vo, = /2 — 1 for the critical case. I define a

temporary variable v = v, — (/2 — 1) that allows v, to be expanded around the
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critical value:

1 1
2voosing \/(2v0)? — (1 —¥2, — x)%
1

:\/4v’—1—1—\@)2—(1—(1/—14—\@)2—36)2

~ (o VoH) ¢

(o 1 n \[ 4

v < ﬂ(ﬂ_l)lﬁ %3/2 16(\[—1)3/2f
O[V]?.

OF] ) +

(3.23)
It is evident that in the large-a limit (x — 0), Equation (3.23)’s leading factor is
1/+/x given v/ is small. The number density of a can be obtained by

dN dN
da ~ dx

dx
da

1 1 15
—oxa . (3.24)
\/;caz

It is perhaps surprising that both the diffusion and patched-conic approximations
~15

reach the same a~ ' steady-state distribution, despite the fact that the two meth-
ods approach this problem from very different perspectives. Although technically
speaking, the a~!** power law just derived only holds for 7 = /8, I will demon-
strate in Section 3.4 that for other values of 7, this power law is still a very good

approximation to the semimajor axis distribution that developes.

3.3 Estimating the Relaxation Time

In the patched-conic model, a uniform distribution of the angle 6 is equivalent to
an a~ !> power law distribution of the semimajor axis in the large a limit. This
result provides a novel perspective to approach the scattering problem using flyby
dynamics. In this section, I will estimate the relaxation timescale tg, defined as the
time for which an ensemble of small bodies initially in the proximity of the planet
approaches the a~!-* steady-state distribution (similar to the diffusion timescale tp
in Equation 3.2). This timescale can serve as the characteristic timescale for the

scattering problem consisting of a Sun and a planet on a circular orbit, thus I also
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address it as the scattering timescale in this thesis. Note that in the diffusion model,
past works have had to estimate the diffusion coefficient numerically.

Considering a hyperbolic planetary flyby with v, (Figure 3.4), one can compute

AG from
sin<A€> 1
= ) 3.25
2 NAERTRZYIT (3.25)

where the impact parameter b (solid line in Figure 3.4) is the ‘unperturbed’ closest
distance between the incoming v, vector and the planet. For a given planet and
Voo» the magnitude of the deflection angle A# solely depends on b. The more distant

a flyby is, the smaller the deflection angle is, as well as the induced orbital element

2 6
00

change. When the impact parameter b > 1, /v5_ ° and the deflection angle is small,

Equation (3.25) can be simplified to

2pp
Af ~ @

(3.26)
The ‘B plane’ (blue plane in Figure 3.4), defined as the plane that crosses the planet
center and is perpendicular to the incoming v, cuts through the Hill sphere and
creates a circle with Ry. Assuming the location of b is randomly picked from this
circle for each flyby, the resultant radial distribution is linearly proportional to b

(instead of being uniform). Therefore, the mean square of Af is given by

R(A0)2bdb
o bdb
_ 843 In(Ru/Ry) (3.27)
Vi R, R
_ 8In(Ru/Ry) Hp

2 40
Ry Vi,

(a0%) =

if R; < Ry,
where R; is the impact radius, corresponding to the smallest b that would lead to

a collision with the planet (Figure 3.9). If the planet’s gravity is neglected, the im-

pact radius is the geometrical planetary radius R,. The gravity well, however, bends

SFor the critical value of voo = /2 — 1, this is equivalent to a Jupiter flyby further than leRH’ a

Saturn flyby further than 5 Ry, or a Uranus/Neptune flyby further than about 15 Ry.

75



incoming velocity vectors towards the planet, causing R; to be larger than R,,. This
effect is also known as the ‘gravitational focusing’ in planetary formation theories

(Safronov, 1972). The impact radius R; is the product of the planets radius R,

Figure 3.9: Gravitational focusing diagram. Due to its gravity, the planet
would bend the incoming v, towards itself. The impact radius R; is de-
fined as the smallest impact parameter b that would lead to a collision
with the planet, which is larger than the planet’s physical radius Rj.

and the square root gravitational focusing enhancement , /F, (Lissauer & de-Pater,

2013):
R, = Rp / _ Rp escape / (3.28)

For giant planets in the Solar System, /F, ~ 10 for voc = v/2 — 1, therefore R; can

be approximated as
v/ 2R
INES VT

Voo

, ifR;>R,. (3.29)

To estimate the timescale for scattering objects to reach the a~!-° distribution, we
recall the definition of relaxation time, which is commonly used in thermal conduc-

tion (Landau & Lifshitz, 2013)
lZ
fo o 3.30
R DG 3 ( )
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where [ is the dimension of the system and Dy is the diffusion coefficient (similar
to the D in Equation 3.2). The random walk in ¢ is analogous to the conduction

problem with the dimension | ~(7 — 6),s) (Figure 3.6) and

(40%)

(3.31)
26t

Dy ~

in which 6t is the average time between two consecutive Hill sphere entrances. An

order of magnitude estimate of 0t for near-planet small-bodies (i.e. a ~ a, = 1) is

1 1
ot ~ P, X — X —,
Ry 4Ry
~— ~— ~—
Period of the planet M factor  w factor (3.32)
— P p
= 5
4Ry

This equation is composed of three factors. The period factor P, establishes the
underlying timescale of the problem. The M factor states that when the small body
is on the planet’s orbit (r = 1 and z = 0), the encounter probability is proportional
to the planetary Hill radius Ry. The w factor arises for inclined orbits. It comes
from the geometry constraint that for an orbit that is crossing (9 < a,) and with
inclination larger than the Hill radius factor i > iy, the ascending and descending
nodes cross the planet’s orbit exactly 4 times during a precession of the small body’s
orbit. The scale iy is defined simply as the angular height of the Hill sphere, which

for our unit planetary semimajor axis

R m
g = 2 = 3 L (3.33)
1 3Me,

For Jupiter, Saturn, Uranus, and Neptune, iy = 4°,2.6°,1.4°,1.5°, respectively. In
the case of i < iy, close encounter probability with the planet will be greatly en-
hanced by a factor of 1/Ry. However, except for the 2D case where the planet and
particles are strictly co-planar, the scattering process itself will heat up the incli-
nation distribution of small bodies (even though they have initially near co-planar
orbits) up to iy long before they reach the steady state. Therefore, the w factor playsa

role in Equation 3.25 for the vast majority of the evolution, and the encounter prob-
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ability is only temporarily boosted even if the particles and the planet are started on
near co-planar orbits. The factor of this temporary encounter frequency boost varies
from ~15-60 for Solar System giants. Therefore, I assume the average time between
two encounters for near-planet orbits t is unchanged (Equation 3.32), in order to
continue the analytical derivation.

Combining Equations (3.27) and (3.32), one obtains

LR ~ w (1/00) . ifvee > V2 -1, (3.34)
Pp 161n (RH/RI) Kp

which is a function only weakly dependent on Ry, because the strong R, terms in
(3.27) and (3.32) cancel out.
For planets in our Solar System, the coefficient In (Ry/R;) ~ 5 (see Table 3.1),
thus using (3.21), tg can be rewritten as
(ﬂ- — 91055)2

-2
wxCoge= e () B WT<E 0

Table 3.1: Relaxation time t for planets in the Solar System

Planet mp/M@ In (RH/R[) tr
Mercury 1.66x10~7 4.5 ~40 Gyr
Venus 2.45x107° 4.9 ~400 Myr
Earth 3.00x107¢ 5.2 ~400 Myr
Mars 3.23x1077 5.7 ~60 Gyr
Jupiter 9.55x10~* 4.2 ~60 kyr
Saturn 2.86x1074 4.8 ~1 Myr
Uranus 437x107° 5.9 ~100 Myr
Neptune 5.15x107° 6.1 ~200 Myr

Note. tp calculated for Solar System planets using Equation (3.34) assuming 7 =
\/8 (with respect to the target planet). The dimensionless coefficient In (Ry/R;) is
tabulated for the the relative velocity of voc = V2 —1.

The tg given in Table 3.1 is close to the diffusion timescale for near-planet orbits
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in Figure 3.2, but instead of obtaining D via numerical simulation as Duncan et al.
(1987) did, I derive an analytical solution for the diffusion coefficient. It is worth
noting that the relaxation time tg is inversely proportional to the planetary mass
squared m,, 2, Malyshkin & Tremaine (1999) show that the diffusion timescale in
Yabushita (1980)’s solution also scales with m,; 2, though they approach this problem
from a different point of view. Using Equation (3.35), I calculate ¢z for all Solar
System planets in Table 3.1, assuming 7 = /8 and 6., = 0. This ¢ represents the

shortest tz among orbits with various 7, for the following reasons:

1. In the loosely-coupled (7 > 1/8) case where the orbit may be able to spon-
taneously de-couple from the planet (see Figure 3.8), the time for orbits to
reach the steady-state orbital distribution is longer than the tz predicted by
Equation (3.35), which will be illustrated numerically in Section 3.4 with nu-
merical simulations. This can be understood through figure 1 in Duncan et al.
(1987), where it demonstrates the average energy change per orbit decreases

significantly as g rises above the planet’s orbital distance.

2. In the closely-coupled case (7T < +/8), orbit decoupling does not occur.
Equation (3.35) provides estimated timescales for scattering bodies in a wide
range of orbital elements, whose dependence is compressed to a single vari-
able T (or voo). tr is strongly influenced by v in two ways: Increasing voo
not only limits the & mobility (Equation 3.25), but also shortens the ‘dimen-
sion’ of the problem by limiting the accessible range of § (Figure 3.6). The net

result of these two competing factors’ can be evaluated through

2
T—2
arccos _ 2
tiRg 1— (2”_7—) (3 T) . if T <+/8. (3.36)
trlr—y5 7T 3-8

The value of the tg scaling factor as a function of 7 is plotted in Figure 3.10. Gen-
erally speaking, the Tisserand parameter 7 decreases as i or e grows, extending the
relaxation timescale as a result of a faster encounter velocity. This trend continues

until the orbit hits the large-a zone of 7 < —1, where a = g, orbits cannot exist

"The impact radius Ry is also affected by v as shown in Equation (3.29), but since Ry only appears
in In (Ru/Ry), tr’s Voo dependence through this term is weak.
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(see Figure 3.7°s dark blue curve). Getting to very low values of T requires low g
or large i. To see this, set A(1 — e) = 1 and send A — oo in Equation (1.17),
T — 24/2qcosi. Different ranges of 7 dominantly (but not entirely) correspond
to different i, from prograde, to polar, and to large-a retrograde orbits (Namouni &
Morais, 2021). I will mainly focus on the implanted TNOs in Chapter 5 and 6, most
of which lie within a limited range of 7 ~ (2.5,3.2), for which fg for Neptune is

several hundred million years (Table 3.1).

40
Large-a
retrograde Polar Prograde
30 i I 17 17 1
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Figure 3.10: Relaxation time fz (in the unit of tR|7-: /B See Table 3.1) as a

function of the Tisserand parameter in the range of —V8 < T <8
(closely-coupled case). To decrease 7, i generally increases and thus the
orbit changes from prograde, to polar (i ~ 90°), and to large-a retro-
grade (see Namouni & Morais 2021). Known “hot population” TNOs
normally have 7" ~ (2.5,3.2) so their relaxation timescales are several
hundred million years.

3.4 Comparison with Numerical Simulations

To demonstrate the validity of the a~!-° steady state (Equation 3.24) and the analyt-

ical equations for the relaxation time (Equation 3.35 and 3.36), I carry out several
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numerical simulations with GLISSER, an extension of the GPU integrator GLISSE
developed by Zhang & Gladman (2022) (also see Section A). It can follow thou-
sands of test particles in parallel while handling their close encounters with planets.
It is thus a perfect tool to study the time-varying distributions of particles scattered
by planets. Appendix A details performance tests and Appendix A.1 shows the con-
servation of the Tisserand parameter by the integrator.

The first simulation contains a Neptune on a circular orbit at ay = 30 au and
10,000 test particles initialized with a9 = 61 au and 7 = 2.8, which is a delta
function in both a and 6 space. This corresponds to the closely-coupled case defined
in Section 3.2, in which aloss cone of 0455 =~ 29° (Equation 3.21) is opened. They are
then integrated under the gravity of the Sun and Neptune, which is a CRTBP system
where the Tisserand parameter is conserved (Section 1.1.3). The time evolution of
test particle a and 6 distributions are illustrated in Figure 3.12.

Figure 3.12 confirms that the a~!> power law is indeed a steady state in the
CRTBP system regardless of particle’s initial conditions. However, a more practi-
cal numerical experiment would be to estimate the timescales for particles that are
initially close to the planetary semimajor axis. This likely has a clearer cosmogo-
nic implication as scattering objects we see in today’s Kuiper Belt were thought to
be planetesimals that were formed near giant planets or in the path of the Nep-
tune’ outward migration (i.e. they probably had initial a close to Neptune’s ay when
there were first scattered). Additionally, in the patched-conic formalism, the scat-
tering timescale can only be estimated for close-coupled orbits with 7~ < /8 (Equa-
tion 3.35). It is thus important to verify whether the steady state for 7 > 1/8 orbits
is also a1, If so, what are their scattering timescales?

I create another GLISSER simulations with 50,000 test particles with some value
of the Tisserand parameter are initiated on orbits close to that of Neptune (and not in
any neptunian MMRs). At each output, I fit the semimajor axis distribution with the
functional form a® for a > 40 au particles (see Figure 3.11). Figure 3.12 shows the
time evolution of the power law index « for 7 = V/8, 2.9, and 3, which represents
the collective dynamical movement of the particle ensemble.

As shown in Figure 3.12, the 7 = /8 (blue) initial conditions have the shortest
tr of ~200 Myr, which is also the value estimated in Table 3.1. For 7 = 2.9 (orange),

tg is slightly longer than the critical case, as spontaneous orbital detachment at large
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Figure 3.11: Three snapshots showing the development of a distributions (left

panels) of 10,000 test particles (near co-planar with initial ay = 61 au
giving 7 = 2.8 and 6y ~ 70°) at 1 Myr, 8 Myr, and 64 Myr, respec-
tively. They were integrated under the gravity of the Sun and a circular
Neptune with a, = 30 au. Right panels show histograms for the angle 6,
where the uniform distribution in # corresponds to the a~!-> power law
in semimajor axis. The loss cone of )., ~ 29° is denoted by the gray
box, as this Tisserand parameter corresponds to the closely-couple case.
The time for particles to asymptote to the a~!> steady state is shorter
than Neptune’s scattering timescale ~200 Myr, because they were al-
ready started at a/a, ~ 2.
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Figure 3.12: Time evolution of the a distribution power law index « (also see
Figure 3.11) for an external scattering disk of Neptune. These simula-
tions all have a Neptune on a circular orbit of 30 au and 50,000 near co-
planar particles initially outside Neptune, but with 7 = /8 (blue), 2.9
(orange), and 3 (red), respectively. In the loosely-coupled case, 7 = /8
particles have the shortest g ~200 Myr, matching in the analytically-
computed Table 3.1. 7 = 3 represents test particles that are initial-
ized near Neptune with e ~ 0, in this case tg ~500 Myr. The three
curves also collectively demonstrate that a~ 1> (dashed line) is indeed
the steady-state distribution of the scattering problem.
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a (see Figure 3.8) would reduce the impact of a flyby. 7 = 3 (red) corresponds to
orbits that are initially near-planet, near-circular, and co-planar, which are often
taken as initial conditions in scattering dynamics studies (e.g., Dones et al., 2004).
At the end of the simulation, the 7 = 3 scattering disk is very close to the a~1
steady state, thus tg ~500 Myr; it’s also worth noting that this case passed through
a—35 at ~60 Myr and a—2° at ~150 Myr. This values may have some linkage to the
a—2* distribution in the observed implanted population, a topic which I will come
back to in Chapter 6.
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Figure 3.13: Same as Figure 3.12 but with Jupiter on a 5.2 au circular orbit and
T = /8 (blue), 2.5 (orange), and 0 (red). The relaxation times for these
three simulations are ~50 kyr, ~150 kyr, and ~2.5 Myr, respectively.

Figure 3.13 shows another set of simulations, but with the very massive Jupiter
(=318 Mg) on a circular orbit of 5.2 au. Their initial Tisserand parameters are set
as T = /8, 2.5, and 0, respectively. In contrast to Neptune-scattering simulations,

distributions of scattered objects by Jupiter do not cleanly asymptote to a~!-> near
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the end of the simulations®. This is probably due to small-number statistics caused
by Jupiter’s fast removal rate. The size of Jupiter’s kicks are so large that several
approximations above fail, and many particles enter the loss cone. At the end of the
1 Myr simulations for 7 = /8 and 2.5, only 2% and 7% particles are still present,
respectively. The 10 Myr simulation for 7" = 0 has a much slower removal rate, with
the particle survival rate of 74%, and is the closest to the a~!> value.

The relaxation time tg, however, can still be measured as the time for « = —1.5
(dashed line) in Figure 3.13. The 7 = /8 critical case has tg ~ 60 kyr, con-
sistent with my analytical prediction (Table 3.1). The other two simulations are
both closely-coupled cases, so their fg can also be evaluated using Equation 3.36.
The tg scaling factors are ~3 for 7 = 2.5 and ~30 for 7 = 0 (see Figure 3.10),
therefore, the computed relaxation times are ~180 kyr and ~1.8 Myr, in excel-
lent agreement with numerical simulations. I have thus demonstrated the validity
of Equations (3.35) and (3.36) for predicting the numerically-measured scattering

timescale.

3.5 Discussion

Though derived from completely different perspectives, the a=!-°

steady state ap-
pears to be an universal distribution for the scattering and diffusion problem in
comet dynamics. Based on the patched-conic model, I obtained analytical estimates
for the diffusion coefficient Dy and the relaxation time tg, for 7 < /8 closely-
coupled orbits. I compared the scattering timescales with numerical simulations,
demonstrating the validity of these equations. Here, I summarize the main points

of my results, and their potential applications:

1> is proportional to the plane-

1. The relaxation timescale to the dN/da o a~
tary period P, and inversely proportional to the planetary mass squared m,, 2,
This will shed light upon the scattering dynamics during planetary migration,
when planetary semimajor axis (and potentially mass) is rapidly changing due

to its interaction with planetesimals (see Section 4.3).

2. The scattering timescale’s dependence on orbital elements can be mostly con-

8For Jupiter simulations, I measure o for a > 10 au objects.

85



densed down to the single Tisserand parameter 7, which affects the timescale
because of the relation to the encounter velocity v, (3.16). T = \/8 repre-
sents the critical case in which the scattering timescale is the shortest. I thus

address t|_ /5 as the typical timescale for the scattering problem.

. As the inclination 7 increases, v, also increases. As a result, the scattering
timescale for large-i orbits is longer than typical timescale, which can be eval-
2 90°) nor-

~

uated through Equation (3.36). Polar and retrograde orbits (i
mally have scattering timescales 20-30 times longer than the typical timescale.
This explains why retrograde TNOs generally have relatively long dynamical
lifetimes, even comparable to the ~4 Gyr Solar System age (e.g., Gladman et
al., 2009; Chen et al., 2016). Understanding the scattering dynamics for ret-
rograde orbits will shed light upon the formation of the peculiar retrograde
small bodies, such as (528219) 2008 KV 4, (Gladman et al., 2009), (471325)
2011 KTy9 (Chen et al., 2016), and (514107) Ka'epaokaawela (Wiegert et al.,
2017; Greenstreet et al., 2020).

. The timescale for most of the scattering TNOs (which have 7" ~ 3) is longer
than the typical timescale and cannot be analytical measured with my method.
This is because most of the scattering TNOs have g > 30 au where the patched-
conic approximation fails. By carrying out GLISSER simulations, I confirm
that /8 < T < 3 particles all approach the a=!-® steady state, with timescales

2-3x longer than the typical scattering timescale.

The fact that the current implanted Kuiper Belt can be acceptably fit with an

a 2> power law (Petit et al., 2011; Beaudoin et al., 2023), one index steeper than the

expected a

~1> may imply that the implantation process likely occurred before the

scattering disk reached its steady state (~500 Myr from Figure 3.12 for 7 = 3). In

the numerical simulation with 7 = 3 particles, the scattering disk obeyed a=%° at

roughly 150 Myr after Neptune scattering began. If one assumes the implantation

process itself (no matter what the mechanism lifted TNO g is) placed TNOs with

equal efficiency in semimajor axis, then the implantation probably occurred around

150 Myr. If the implantation process was to be found to have place them with, lets

say, efficiency o< a (more objects lifted at larger a and less objects at lower a), then the
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implantation would have earlier, around 60 Myr, when the scattering disk was close
to a— 3. It is also worth noting that this timing argument interpretation would be
more complicated if primordial planetesimals coupled with Neptune tended to have
a range of initial Tisserand parameters. Therefore, a more detailed study is needed
to understand the relationship between Neptune’s migration speed (or timescale)
and the a distribution of the detached population.

In short, understanding the evolution of the ensemble of the scattering disk
through the power law index o provides a new way of diagnosing the timing of
the implantation and its corresponding dynamical process. In Chapter 6, I will use
these results to study the detachment of the scattering disk induced by an additional
rogue planet, with the aim of constraining the possible dynamical path this planet

may have taken.
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Chapter 4

Introduction to the Early history of
the Solar System

The origin of our planetary systems is a fundamental and complex scientific prob-
lem. One of the earliest idea related to this problem comes from the German philoso-
pher Immanuel Kant, who proposed the Solar Nebula hypothesis in his book Uni-
versal Natural History and Theory of the Heavens (1755). It was later developed and
refined by the French mathematician Pierre-Simon Laplace in 1796.

In the current consensus, the Solar System formed around 4.568 Gyr ago from
the collapse of a dense giant molecular cloud. This cloud (i.e. the Solar Nebula)
was composed of gas and dust and, as it collapsed, it began to spin and flatten into
a disk-like shape (called a protoplanetary disk) due to the conservation of angular
momentum. The dense core eventually became the Sun, while the dust and gas in
the disk clump together to form planetesimals, which eventually become planets
and other small bodies, such as moons, asteroids and Kuiper Belt objects, in the
Solar System. This is the planetesimal hypothesis proposed in 1905 by American
geologist Thomas Chrowder Chamberlin and astronomer Forest Ray Moulton. This
hypothesis has since been supported by a wealth of scientific evidence. An excellent
example of protoplanetary disks is the Proplyds image (Figure 4.1) captured by the
Hubble Space Telescope (HsT)’s wide field camera. These little blob-like structures
are glowing protoplanetary disks found in the Orion Nebula. They are externally

illuminated and photoevaporated by nearby stars and believed to be embryonic solar
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systems that will eventually form planets.

Figure 4.1: Proplyds (glowing protoplanetary disks) in the Orion Nebula cap-
tured by the HST. This image shows the early stage of planetary system
formation in a giant molecular cloud, where protoplanetary disks are ex-
ternally photoevaporated by nearby bright stars. Photoevaporation could
potentially explain the truncation of the protoplanetary disk that forms
the Solar System (see Section 4.3.2).

This chapter will explore aspects of the formation and early history of the Solar
System, with a focus on the dynamical process of giant planet migration and the
resulting small-body orbital distributions. I will refer to the textbook Fundamental

Planetary Science by Lissauer & de-Pater (2013) in this chapter.

4.1 Planetesimals

Planetesimals are small, solid objects that are thought to have formed during the
early stages of the development of our Solar System. They are believed to have been
the precursors to the planets and other larger bodies that exist today. This term

is also used in a more generic way to refer to small Solar System bodies - such as
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asteroids and TNOs - which are in some sense unincorporated leftovers from the
formation process.

Planetesimals are typically <1000 km in size and are composed of a variety of
materials, including rock, ice, and metal. The chemical composition of a planetes-
imal will depend on the location it formed and its subsequent collisional histories.
An important concept related to planetesimal chemical composition is the frost
line, also known as the snow line. It is a boundary in the protoplanetary disk be-
yond which it is cold enough for a volatile compound (such as water, ammonia, or
methane) to condense into solid icy grains. Inside a particular frost line, temper-
atures are too high for these volatiles to freeze, so they remain in a gaseous state
and some eventually became part of the planetary atmospheres or escaped from the
Solar System.

Each volatile substance has its own snow line depending on its condensation
temperature. The snow line for water in our Solar System was likely at ~3 au (Mar-
tin & Livio, 2012), resulting in the amalgamation of water-scarce rocky planetes-
imals that formed the terrestrial planets. It is also the line where comets become
active. Beyond the snow line, large quantities of water-ice and other ices can con-
dense in the protoplanetary disk, forming icy planetesimals like TNOs in the Kuiper
Belt. The formation process from micrometer-sized dust particles to kilometer-
sized planetesimals is an active branch of research in planetary formation (see recent
review by Birnstiel et al. 2016), and streaming instability (Youdin & Shu, 2002; Jo-
hansen et al., 2007) is one of the new hypotheses that could explain the formation
of planetesimals and match observational constraints.

Streaming instabilities are driven by differences in the motions of the gas and
solid particles in the protoplanetary disk due to a global radial pressure gradient
(Chiang & Goldreich, 1997). The differential speed causes gas drag onto the parti-
cles and the friction exerted from the particles back onto the gas accelerated the gas
and diminished its difference from the Keplerian speed. In a simple disk this would
result in a headwind that causes solid particles to spiral toward the star as they lose
momentum to aerodynamics drag. If there is a small cluster of solid particles in
gas, the local headwind is reduced so the inward drift rate of the cluster decreases.
The slower drifting clusters are overtaken and joined by isolated particles, increas-

ing the local density and further reducing radial drift. This positive feedback (i.e.
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instability) eventually leads to exponential growth in the particle clumps and form
planetesimals from self gravitation. (Weidenschilling, 1977; Birnstiel et al., 2016;
Morbidelli & Nesvorny, 2020).

Figure 4.2: Composite image of the primordial Kuiper Belt object “Arrokoth”
from New Horizons spacecraft data. This image shows it is a contact bi-
nary consisting of two lobes that have similar size and identical colors.

Numerical simulations of the streaming instability process (e.g., Johansen et al.,
2015; Simon et al., 2016) show that planetesimals of a variety of sizes can be pro-
duced, but those that carry most of the final total mass are those of ~100 km in
size. This corresponds to a ‘knee’ in the planetesimal size distribution, which can be
found in OSSOS data (Kavelaars et al., 2021). Furthermore, Nesvorny et al. (2010)
shows that the formation of binary planetesimals is the natural outcome of the gravi-
tational collapse of clumps. These binaries are commonly found in the cold classical
Kuiper Belt (Noll et al., 2008; Fraser et al., 2017; Noll et al., 2020), and one of them -
(486958) Arrokoth - has even been closely imaged by the New Horizons spacecraft
on 1 January 2019 (Figure 4.2).
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4.2 Planet Formation

Planetesimals are important because they are thought to be the building blocks of
planets. Once they reach ~1 km in size, the primary factors controlling the growth
of planetesimals into planets differ from those responsible for the accumulation of
dust into planetesimals. Their orbits are then not significantly affected by interac-
tions with gas in the disk, due to increasing mass-to-surface-area ratios for larger-
sized planetesimals. Instead, the primary perturbations that affect their Keplerian
orbits are mutual gravitational interactions and physical collisions (Lissauer & de-
Pater, 2013). As planetesimals collided and stuck together, they formed larger and
larger objects, eventually creating the cores of planets (a.k.a protoplanets or plane-
tary embryos). This process, known as planetary accretion, is believed to be how the
terrestrial planets and the cores of giant planets formed. These cores can grow to be
thousands of kilometers in size and vary from ~0.1 Mg, (e.g. Mercury and Mars)
to ~10 Mg, (e.g., Jupiter and Saturn’s cores with heavy elements, Guillot 1999) in
mass. The dynamical process of planetesimals growing into planetary embryos are

often divided into the following two steps (Armitage, 2020):

1. Runaway growth, in which a few large planetesimals grow very rapidly by

accreting smaller objects in their vicinity.

This happens in the early stage of planetary accretion, where the mass of a
protoplanet is small enough it cannot effectively heat up the orbital eccen-
tricity or inclination of nearby planetesimals. The relative velocity dispersion

in a circumsolar disk is given by

Voo = V€2 + iV, ife~0andi~0, (4.1)

where vip is the Keplerian velocity. When the velocity dispersion among
planetesimals is small (Voo << Vescape), the gravitational focusing (described
in Section 3.4) of the protoplanet is greatly enhanced, in other words, F, =
1+ (vescape / voo)2 > 1. As a result, the most massive protoplanet can very

rapidly accrete materials in its vicinity. The growth rate of a runaway growth
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is given by (Wetherill & Stewart, 1989; Kokubo & Ida, 1996):
M oc M*/3, (4.2)

which results in an exponential growth, with the largest objects growing much

faster than the smaller ones.

2. Oligarchic growth, in which the growth of planet is more evenly distributed

among protoplanets.

When planetary embryos dominate the stirring of the protoplanetary disk af-
ter reaching a critical mass about 10%2 kg (roughly the mass of Pluto, Wetherill
& Stewart 1989; Ida & Makino 1993), the runaway growth would stall due to
the heating up of planetesimal e and i. This leads to the onset of protoplanet-
dominated stage, during which a small number of protoplanets with similar
masses keep growing by more slowly sweeping up mass from the remain-
ing large number of planetesimals that failed to become protoplanets. This
phase is known as “oligarchic growth” in the sense that not one but several
protoplanets dominate the planetesimal system. The growth rate during the

oligarchic growth is given by (Kokubo & Ida, 1998)

M o< M3, (4.3)

By extrapolating oligarchic growth to the end of protoplanet accretion, the final
mass or isolation mass of protoplanets can be obtained (Kokubo & Ida, 2000, 2002)

3 3
b \:? Y(a) 2/oa 3
Miso >~ 0.16M (4.4)
0.16Ms <10RH> <10gcm—2> <1au) '

where b ~ 10Ry is the orbital separation of protoplanets (Kokubo & Ida, 1998), and

Y.(a) is the surface mass density of solids in the protoplanetary disk, with a typically-
assumed value at 1 au being 10 g cm 2. The end state of planetary accretion predicts
closely-packed planetary embryos as massive as Mars at around 1 au, which is often
used as initial conditions in numerical simulations that study the final stage of the
terrestrial planet formation (e.g., O’Brien et al., 2006).

In the outer Solar System, planetary embryos are generally larger than those in
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the terrestrial region (Equation 4.4). For example, Jupiter and Saturn are believed to
have cores of ~10 Mg, (Guillot, 1999). When a planetary embryo reaches this mass,
it is able to accumulate substantial amounts of gas from the surrounding protoplan-
etary disk (the average dust-to-gas ratio in protoplanetary disks is in the order of
1072, as found in the interstellar medium (Birnstiel et al., 2010; Taki et al., 2016).)
and undergo another runaway growth. This must have happened after the core had
become sufficiently cool that the gas accretion can occur (a few million years, see
Pollack et al. 1996; Lissauer et al. 2009), and prior to the removal of the hydrogen
and helium in the disk by solar radiation (< 10 Myr, Lissauer & Stevenson 2007;
Lissauer & de-Pater 2013). This is known as the ‘core nucleated accretion model’ in
the theory of giant planet formation (Safronov, 1972; Lissauer, 1993; Pollack et al.,
1996).

4.3 Planetary Migration

Planetary migration refers to the process by which a planet changes its semimajor
axis a over time due to interactions with the gas disk or planetesimals. The existence
of hot Jupiters' in exoplanetary systems could be explained by substantial inward
gas-driven migrations, though other explanations like planet-planet dynamical in-
teractions and tides are also likely (Dawson & Johnson, 2018). There is also evidence
for giant planet migrations in the Solar System (Nesvorny, 2018), which could po-
tentially explain some puzzles in the small body distributions, including main-belt
asteroids and TNOs.

4.3.1 Gas-Driven Migration

When abundant gases are still present in the protoplanetary disk, a planet can mi-
grate towards the star as a consequence of angular momentum exchange between
the disk and the planet. These are two types of disk-induced planetary migrations
(Goldreich & Tremaine, 1980; Lin & Papaloizou, 1986; Lissauer & de-Pater, 2013;
Armitage, 2020):

1. Type I migration in the gas happens when the planet’s mass is small enough

"Hot Jupiters are Jupiter-scale exoplanets on surprisingly close-in orbits, usually with a < 1 au.
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that it does not clear a gap around its orbit. For small bodies, the semimajor
axis drift rate of type I migration is linearly proportional to the perturbing
body’s mass. But for planetary-sized bodies, the migration involves compli-
cated nonlinear gravitational and fluid dynamics interactions and its rate may
be very complicated to calculate. As a result of the planet interacting with
strong spiral modes and the thermo and radiative state of the disc, both in-
ward and outward migrations can occur and be relatively rapid (Kley et al.,
2009; Michael et al., 2011).

2. Type II migration happens when the planet is able to perturb the disk so
strongly that it clears an annular gap in the disk surrounding its orbit. The
speed of this migration does not vary with planetary mass but depends on
the disK’s viscosity, unless the planetary mass is comparable to the mass of
the local disk. When the planet’s mass becomes similar to that of the proto-
planetary disk, inertial effects become important, and the rate of migration
slows (Lissauer & de-Pater, 2013).

The gas-driven migration of giant planets, especially Jupiter and Saturn, may
relate to the formation of the terrestrial planets and the significant compositional
differences across the main asteroid belt (see Section 1.3 for definition). The assem-
bly of the Solar System terrestrial planets can be successfully modeled with all of the
planetesimals initially confined to a narrow annulus between 0.7 to 1.0 au (Wether-
ill, 1986; Hansen, 2009). If too many planetesimals had existed beyond the orbit of
Earth, many studies have shown (e.g., Raymond et al., 2006; O’Brien et al., 2006) the
mass of a in-situ formed Mars would be too massive assuming a smoothly varying
minimum-mass solar nebula’. This is also known as the ‘small Mars’ problem in
planetary formation.

In addition to terrestrial planet formation, there are also problems with the
mass, orbital distributions, and compositions of the main asteroid belt. The total

mass of the main asteroid belt (=3% of Earth’s moon) is 3 to 4 orders of magnitude

*The minimum-mass solar nebula is a protoplanetary disk that contains the minimum amount of
solids necessary to build the eight planets of the solar system (Crida, 2009). The most famous version
of the minimum-mass solar nebula was provided by Weidenschilling (1977) and Hayashi (1981), in
which a lack of mass in the Mars and main asteroid belt region was observed in Weidenschilling
(1977)’s figure 1.
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less than would be expected from the minimum-mass solar nebula. Moreover, the
orbits of most asteroids are more eccentric and inclined to the invariable plane of
the Solar System, in contrast to the cold classical belt whose inclination profile is
much more confined (Van-Laerhoven et al. 2019 and Chapter 2). There is also a
mix between volatile-poor asteroids (mostly S types that formed closer to the Sun)
and volatile-rich asteroids (mostly C types that formed farther away from the Sun)
in the main asteroid belt. These two main asteroid classes have partially overlapping
semimajor axis distributions, though C types outnumber S types beyond ~2.8 au
(Gradie & Tedesco, 1982). Recent compositional analyses on the asteroid (162173)
Ryugu samples retrieved by the Japanese Hayabusa 2 mission suggest that the pro-
genitor planetesimal of Ryugu could have formed in the outer Solar System reservoir
and gotten implanted into the main belt at early stage of the Solar System (Yada et
al., 2022; Nakamura et al., 2022b; Nakamura et al., 2022a; Paquet et al., 2022).

All these lines of evidence imply that there might have been large-scale stochas-
tic evolutions of planetesimals in the inner Solar System. One hypothesis for ex-
plaining these features is the ‘Grand-Tack’ model proposed by Walsh et al. (2011),
Raymond et al. (2014), and O’ Brien et al. (2014). In this model, Jupiter (initially
formed around 3.5 au) has gone through both inward migration to the inner So-
lar System (~1.5 au) and then outward migration to its current location (5.2 au),
leading to the truncation of the planetesimal disk that formed the terrestrial planets
at 1 au and implantation of main belt asteroids from Jupiter scattering. Both the
inward and outward migrations were gas-driven, but the outward migration would
not activate until the subsequently rapidly inwardly migrating Saturn is caught in
the 2:3 mean-motion resonance with Jupiter, after which the direction of type IT mi-
gration is reversed for both giants (Masset & Snellgrove, 2001), sending them back
to their current locations. A rapid inward migration of Saturn in a late oligarchic
phase has potential advantages in a rogue-planet scenario (a topic briefly returned
to in Chapter 6).

4.3.2 Planetesimal-Driven Migration

In addition to torques from protoplanetary disks, planets can also migrate by scat-

tering a large mass of planetesimals. Note that this process can continue after the
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gas disk is dispersed (3-10 Myr) and thus is the only migration possible after the
nebula’s removal. The large-scale scattering of planetesimals almost certainly hap-
pened in the past, supported by the existence of a massive Oort Cloud (see Sec-
tion 1.3.3), the implanted Kuiper Belt (see Section 1.3.2) and the Late Heavy Bom-
bardment (LHB) * supported by lunar rock samples from Apollo missions and crater
histories on the Moon, Mars, and Mercury (Wetherill, 1975; Bottke & Norman,
2017).

The change of planet’s semimajor axis due to interactions with planetesimals can

be simply modeled from the conservation of orbital energy:

Eplanet,O + EplanetesimaLO = Eplanet71 + Eplanetesimal,la
_HeMmp  pom - HoMp  fom

2€lp’0 2a0 2ap’1 2&11 ’ (4.5)
11 om (1 1)
ap1 dpo my \ar ap)’

where m,, and a, denote the mass and semimajor axis of the planet, while 7 and a

denote those of the planetesimal. As shown in Equation (4.5), any positive change
in the planetesimal’s a (i.e., 1/a; — 1/ap < 0) will also result in a negative change
(scaled by their mass ratio #/m,) in planet’s a,, vice versa. The maximum inward

change in a, occurs when the planetesimal is ejected (a; — 00):

(4.6)

and the maximum outward change in a, occurs when the planetesimal is scattered

to a Sun-grazing orbit with Q = a, and a; = a,/2,

a2

m
Aap,outward = mi 2ap - ;I; . (4.7)
P

’The Late Heavy Bombardment was a period of intense crater formation on the planets and moons
of the solar system, particularly on Earth and the Moon. It is believed to have occurred between 4.1
and 3.8 Gyr ago. During this time, the Solar System was much more chaotic, with numerous large
bodies colliding with each other and the inner planets. The LHB is thought to have played a major
role in shaping the early solar system and in the evolution of life on Earth.
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In the assumption that both the planet and planetesimal have similar initial or-
bits (a, ~ ao), the maximum inward/outward induced by one planetesimal have
the same form:

—_— (4.8)

thus the fractional change in planetary semimajor axis has the same magnitude of
the planetesimal-planet mass ratio.

The planetesimal-driven migration dynamics is much more complex when sev-
eral planets are interacting with a massive planetesimal disk, which is likely what
happened in the past Solar System. One of the earliest numerical studies of giant
planets interacting with a disk of planetesimals was carried out by Ferndndez & Ip
(1984), in which the authors found the net effect of the planet-planetesimal angu-
lar momentum exchange is Saturn, Uranus, and Neptune migrating outward while
Jupiter migrates sunward (their figure 3). The reason why Jupiter migrates in a dif-
ferent direction is that Jupiter is much more capable of ejecting planetesimals out of
the system whereas the three less massive giants are more likely to ‘hand in’ plan-
etesimals to Jupiter.

The timescale and radial range of the planetesimal-driven migration depend
on the total mass and distributions of planetesimals (see Equation 4.8 and Hahn &
Malhotra, 1999). Assuming a planetesimal disk of ~10 Mg, the ejection of such a
mass of planetesimals corresponds to an inward migration of Jupiter of a few tenths
of an au, and an outward migration of Neptune of several au (Malhotra, 1993).

While the exact evolutionary history of a planetesimal-driven migration is stochas-
tic, it is often approximated using a simple exponential model given by (Malhotra,
1993)

a(t) = as — Aae™ T, (4.9)

where ay is the planet’s current semimajor axis, Aa = ay — ao is the migration
distance, and 7 is the characteristic e-folding timescale of the migration.

In the outer Solar System, the outward migration history of Neptune has been
extensively studied. This is because as the outermost known planet of the Solar
System, the dynamical effect of Neptune migration is not only limited to the orbital
range it had migrated through (~20-30 au), but also extends to semimajor axis

beyond 30 au due to its mean-motion resonances. Figure 4.3 is a schematic diagram
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showing that as Neptune migrates outwards, its MMRs will also migrate at different
speed. The farther a MMR is, the larger the distance (and faster) it will migrate.
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Figure 4.3: A schematic diagram showing the outward migrations of Neptune
and its outer mean-motion resonances. The orange curve denote the ex-
ponential semimajor axis change of Neptune (modeled in Equation 4.9)
from ~20 au to its current location of 30.1 au. Dashed curves represent

the resultant outward migration of its MMRs at different speed. Adapted
from Malhotra (1995)’s figure 1.

Studies have attempted to constrain the migration history of Neptune by com-
paring migration models and TNO orbital distributions. Malhotra (1993) and Mal-
hotra (1995) attempted to explain Pluto’s peculiar orbit by resonant capture from
an initially low-e and low-i orbits during Neptune’s outward migration, but a Pluto-
like inclination (~17°) is hard to produce by their simulations. Moreover, simu-

lations show that Neptune’s migration into a initially relatively cold Kuiper Belt is
able to keep the cold classicals at low-e and low-i orbits, but still does not create
the observed KBOs with inclinations above i ~ 15° (Chiang et al., 2003; Hahn &
Malhotra, 2005). In short, hot TNO populations do not seem to be created through

in-situ stirring by neptunian MMRSs, because ‘resonant sweeping” does not account
for their excited i distribution.

Instead, the hot population’s excited inclination is most likely to have been cre-
ated by Neptune scattering when Neptune migrated into a planetesimal disk (Gomes,
2003). The implantation rate of the hot population is $1% (Nesvorny, 2018), there-
fore a massive disk (~10 Mg) outside Neptune is required to produce today’s pop-
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ulation. The primordial protoplanetary disk in which the Neptune has migrated
through was mostly likely truncated at ~30-35 au, because a continuous massive
disk beyond 35 au would have led Neptune to keep migrating to a > 30 au. In
addition, to avoid producing Earth-mass or Mars-mass embryos originally outside
the initial location of Neptune also requires the existence of a disk edge near 30 au
(Gomes et al,, 2004). The disk may have been truncated by photoevaporation or
close-in stellar flybys if our Solar System formed within an embedded cluster (see
Adams 2010, Gladman & Volk 2021, and Section 4.4).

Thanks to TNO surveys in the past two decades (e.g., Petit et al., 2011; Ban-
nister et al., 2018), the details of Neptune’s outward migration can be constrained.
Nesvorny (2015a) shows that the TNO inclination constraint could be satisfied if the
Neptune migration is slow (7 2 10 Myr) and long-range (an,o < 25 au). Detailed
studies also show that Neptune’s outward migration is not smooth but grainy, mean-
ing that Neptune’s orbit was constantly nudged by Aa ~ 107> au due to Pluto-scale
planetesimal encounters during migration. This could avoid creating an excessively
large 3:2 population (Nesvorny & Vokrouhlicky, 2016; Lawler et al., 2019) and help
populate both resonant and detached populations beyond 50 au (Nesvorny et al.,
2016; Kaib & Sheppard, 2016). There is also evidence for an eccentric early migra-
tion of Neptune (Nesvorny, 2021), which could explain the g > 35 au and i < 10°
TNOs with 50 < a < 60 au if Neptune’s orbit was excited to ex >~ 0.1 and subse-

quently damped to the current value of ey = 0.01.

4.3.3 Planetary Instability

Besides migration inside a gaseous or a planetesimal disk, planets are also able to
suddenly drastically change their orbits by direct planet-planet interactions. Such a
model is called an instability model because the rapid change is often triggered by
breaking a temporarily-stable planetary configuration.

The best-known instability model of the Solar System is the Nice model, named
after the Nice observatory in southern France where the model was initially con-
ceived. It attempts to provide a large scenario for the currently observed plane-
tary orbits, the present orbital distribution of the main-belt asteroids, the origin of

Jupiter’s Trojans, and the LHB which occurred ~700 Myr after the planets formed.
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The original Nice model, composed by Morbidelli et al. (2005), Tsiganis et al. (2005),
and Gomes et al. (2005a), has four giant planets initially placed on compact quasi-
circular and coplanar orbits, with the outermost ice giant having a < 20 au. This
configuration is metastable for several hundred million years, until Jupiter and Sat-
urn ever crossed their 1:2 mutual mean-motion resonance due to planetesimal-
driven migrations, triggering the planetary instability. The Solar System would be
largely destabilized caused by the sudden jump in Jupiter and Saturn’s eccentricities.
Asaresult, Uranus and Neptune would get scattered outward to large-a and e orbits,
initiating a new wave of planet-planetesimal interaction in the outer disk (Tsiganis
etal,, 2005). This allows the two ice giants to migrate to their current locations while
damping their eccentricities and inclinations. In addition, the instability also vio-
lently destabilized pre-existing Trojans and most of the Jupiter Trojans we see today
were chaotically captured (Morbidelli et al., 2005). Jupiter and Saturn’s temporary
large-e state also excited the primordial main asteroid belt and delivered them to
the inner Solar System, which triggered the LHB (Gomes et al., 2005a).

Subsequent studies derived from the Nice model reveal its potential to 1) explain
the capture of irregular satellites during planetary encounters, including Neptune’s
largest moon Triton (Nesvorny et al., 2007), 2) form an implanted Kuiper Belt (Lev-
ison et al., 2008) that is in agreement with some of the observations (Fraser et al.,
2014; Pike et al., 2017a; Pike & Lawler, 2017) while 3) keeping the cold classical
Kuiper Belt relatively unexcited (Batygin et al., 2011). It is also not inconsistent
(but not fully consistent either) with the formation of the Oort Cloud (Brasser &
Morbidelli, 2013).

The Nice model also faces several criticisms and challenges. The idea of an
~0.5 Gyr metastable delay before dispersing the outer Solar System’s massive pri-
mordial planetesimal is inconsistent with constrains on the Solar System’s dynami-
cal and collisional history (Nesvorny, 2018; Gladman & Volk, 2021; Benavidez et al.,
2022). Moreover, the slow migration of Jupiter and Saturn past the 2:1 resonance,
which is a defining feature of the original Nice model, is difficult to reconcile with
the orbital distribution of the asteroid belt (Morbidelli et al., 2010) and constrains
provided by terrestrial planets (Morbidelli et al., 2009; Brasser et al., 2009; Walsh &
Morbidelli, 2011; Brasser et al., 2013). This has led to the proposal of the five-planet
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model *, which involves a very short-lived additional ice giant that was eventually
ejected by Jupiter (Thommes et al., 1999; Nesvorny, 2011; Nesvorny & Morbidelli,
2012; Brasser et al., 2013; Batygin et al., 2012) to address these challenges. In a ‘five-
planet model, the sudden jump in Neptune’s semimajor axis that occurs during the
epoch of the ejection of the fifth ice giant could also account for the concentration
of cold classicals near 44 au, known as the Kuiper Belt kernel (Petit et al., 2011;
Nesvorny, 2015b), as well as a late excitation of Neptune’s eccentricity (Nesvorny
et al., 2020; Nesvorny, 2021).

In summary, the planetary instability model represented by the Nice model is
by far the most discussed Solar System model that provides proposed solutions for
various puzzles in planetary formation and small body orbital distributions, includ-
ing the main asteroid belt, Trojans, irregular satellites, and part of the Kuiper Belt. It
would be fair to say that many of these solutions are ad-hoc tunings of the original
scenarios. Additionally, it has great difficulties in explaining the distant Kuiper Belt,
especially TNOs with high perihelia that are generally out of the reach of all known
giant planets, even during an instability event. Starting from the next section, I will

mostly focus on the formation hypotheses related to the distant Kuiper Belt.

4.4 Stellar Environment

The birth environment of the Sun plays a vital role in the formation of the Solar
System. Stars form in clusters of tens of stars to 10° stars. There is direct evidence

that Sun was born in a moderate star-forming birth cluster (Adams, 2010):

1. The presence of short-lived radioactive species from meteorites could be pro-
duced in supernova explosions, which probably occurred when the Sun was

in a birth cluster where the stellar density is high.

2. The protoplanetary disk was likely truncated at ~30 au (see justifications in
Section 4.3.3). This could be caused by either photoevaporation from the

ultra-violet (UV) radiation or very close-in stellar flybys. Both processes would

* Although the rogue planet model I will study in the next two chapters also falls into the category
of a ‘five-planet model’ in the literature, this term has been specifically used to address a Solar System
model with an extra giant planet.
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most likely happen if the Sun formed in a birth cluster of at least thousands

of stars.

Another piece of evidence advocated by many researchers is the presence of dis-
tant detached objects, such as 2000 CR;¢s (Gladman et al., 2002), Sedna (Brown et
al., 2004), 2012 VP35 (Trujillo & Sheppard, 2014), and Leleakathonua (Sheppard
et al.,, 2019). They all have very large semimajor axes, as well as very distant peri-
helia, too detached to be explained by any Solar System models with only the four
giant planets. Table 4.1 shows the barycentric orbits of the 22 known TNOs with
a > 200 au and g > 38 au. Recall there is huge bias against detecting orbits with
increasing a, g, and i.

Close-in stellar encounters when the Sun resided in a birth cluster has been
discussed by several authors as an idea for their origin (Ida et al., 2000; Gladman et
al., 2002; Morbidelli & Levison, 2004; Kenyon & Bromley, 2004; Brasser et al., 2012;
Brasser & Schwamb, 2014). In this hypothesis, detached objects with extreme g are
often called Inner Oort Cloud (10C) objects, implying a belief they were created in a
similar manner how the Oort Cloud was created. However, there are some stringent

constrains and serious drawbacks related to the stellar encounter theory:

1. Flyby timing

Such stellar encounters creating TOC objects’ must have occurred at the very
early stage of planetary migrations and planetesimal scatterings (<100 Myr),
in order to not hinder the subsequent formation of the more massive Oort
Cloud (Morbidelli & Levison, 2004).

2. Flyby distance

The stellar flyby must also have pinpointed to a narrow annulus of the Solar
System, with the closest encounter distance 7y, < 400 au to create Sedna
and rmin 2 225 au to preserve planetary orbits (Adams, 2010). Recently,
Batygin & Brown (2021) also found that to maintain the unexcited structure
of the cold classical Kuiper Belt, the upper bound of number density-weighted
cluster residence time is xy < 2 x 10* Myr pc—, corresponding to the closest
approach of rmin 2 240 au for a passing star within the Solar System’s birth

cluster.
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Table 4.1: barycentric orbital elements of TNO with a > 200auand g > 38 au.

Name (Provisional designation) a (au) q (au) i(®)
148209 (2000 CRygs) 221.9 441 22.8
90377 Sedna (2003 VB;,) 506.4 76.2 11.9
474640 Alicanto (2004 VN, ;,) 328.2 47.3 25.5
2010 GBy74 348.6 48.6 21.6
2012 VP13 262.0 80.5 24.1
2013 FTyg 291.7 43.5 17.4
2013 RA ;g9 462.8 46.0 12.4
2013 SYg9 732.9 50.0 4.2
2013 SL1p2 314.4 38.1 6.5
505478 (2013 UT}5) 200.1 43.9 10.7
2014 SR349 298.6 47.5 18.0
2014 WBss6 280.2 42.7 24.2
2015 GTs 311.2 38.4 8.8
2015 KGg3 679.8 40.5 14.0
2015 RXyy5 423.5 45.6 12.1
541132 Leleakithonua (2015 TGsg;) 1089.6 65.0 11.7
2016 SAsg 2449 39.1 21.5
2016 SD;06 350.2 42.7 4.8
2018 VM35 289.4 44.5 8.5
2019 EU; 12209 46.8 18.2
2021 DK 779.9 44.4 15.4
2021 RRygs 990.9 55.5 7.6

Note. Three bolded TNOs are the three extremely detached Sednoids that have
q > 60 au. Data retrieved from JPL Small-Body Database (https://ssd.jpl.nasa.
gov/tools/sbdb_query.html) on January 3rd, 2023.

3. Inclination distribution

Numerical simulations that populate the IOC by passing stars generally create
inclination profiles significantly hotter than the scattering disk, with a signif-
icant fraction of particles on even retrograde orbits (see, for example, figure
6 in Brasser & Schwamb 2014 and figure 3 in Batygin & Brown 2021). This is
inconsistent with the inclination distribution of the 22 known distant high-g

TNOs (Table 4.1), whose mean ecliptic inclination is only ~15°, consistent
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with the inclination profile of the implanted population with the Gaussian
width of ~15° (Brown, 2001; Van-Laerhoven et al., 2019). Assuming this
population were really created by one close-in passing star, the direction of
that particular stellar flyby must have also been a (low-probability) flyby at
low inclination relative to the plane of the Solar System, in order to not heat

their inclination distribution.

In conclusion, no stellar flyby model has successfully explained the a, g, and i
distributions of distant high-qg TNOs. The right timing, the small range of allow-
able approach distance and the right injection angle are all required to produce the
observed distributions. These weaknesses of the birth cluster explanation are often
glossed over and the argument that Sedna is an IOC object made by passing stars
has often taken as a fact in literature (e.g. Pfalzner 2013; Portegies-Zwart et al. 2021)

Therefore, I will refrain from using the word ‘Inner Oort Cloud objects’ due
to the lack of concrete evidence for their formation mechanisms. Instead, I adopt
the term Sednoids (first coined by Bernstein 2004, but there is no accepted orbital
element range) to address Sedna-like high-q and large-a TNOs. In the next chapter,
I will focus on hypotheses that use an additional planet to explain puzzling features,

including Sednoids, in the Solar System.

4.5 Additional Planets

The mathematical prediction of Neptune’s existence represents the only successful
story of a new planetary discovery by dynamical evidence within the Solar System
(Krajnovi¢, 2016). Upon the discovery of Uranus by William Hershel, astronomers
continued to keep track of Uranus’s location and computed ephemerides over time
based on the then-known giant planets (e.g., Bouvard, 1824). Subsequent observa-
tions revealed a growing difference between the theoretical and the observed loca-
tions, which led French astronomer Urbain Le Verrier (Le-Verrier, 1846b,a) and
British astronomer John Couch Adams (Adams, 1846) to propose an additional
planet outside the orbit of Uranus. Le Verrier sent his results to Johann Gottfried
Galle at the Berlin Observatory, who immediately began to search the suggested po-
sition in the night sky on 23 September with his student, Heinrich Louis d’Arrest.

Neptune was discovered just after midnight, after less than an hour of searching and
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less than 1 degree from the position Le Verrier had predicted.

After the successful discovery of Neptune, Le Verrier focused on the anoma-
lous precession rate of Mercury’s orbit, that could not be fully accounted for by
known planets. In 1859, he proposed that an additional planet interior to Mer-
cury (which he gave the name Vulcan) is responsible for imposing extra precession
on Mercury. In the early 20th century, however, Einstein developed his theory of
General Relativity (Einstein, 1916), which self-consistently resolved the Mercury

precession problem. The need for Vulcan was thus alleviated.

4.5.1 Still-Existing planets

Since the discovery of the Kuiper Belt (Jewitt & Luu, 1993), several hypotheses in-
volving additional planets have been proposed to explain its orbital structures. The
idea that Mars- or Earth-scale planets might have assembled beyond 50 au was in-
spected by Stern (1996), who hypothesized that the primordial disk was not trun-
cated at ~50 au (their figure 5). Upon the discovery of the first detached TNO 2000
CRj05, Gladman et al. (2002) argued that planetary-sized body that is still resident
in the Kuiper Belt could in principle scatter this high-g TNO to its current orbit.
Brunini & Melita (2002) studied the effects of a Mars-sized planet with a ~ 60 au
and showed that the existence of such an object would produce a cliff at ~50 au. The
still-present planetary-sized body in the Kuiper Belt was challenged by Morbidelli et
al. (2002), who showed that planetary embryos never formed in the Kuiper Belt, oth-
erwise at least one of the surviving embryos should have already been discovered by
then Kuiper Belt surveys considering the 15-20% retention rate they calculated for
the original embryos. Furthermore, the existence of an additional planetary mass
inside 100 au would have excited the cold belt, which will be studied in Chapter 6.
The discovery of even more distant high-g TNO Sedna (Brown et al., 2004)
again lead to the creation of many hypotheses involving the presence of a distant
planetary-mass objects. Gomes et al. (2006) proposed that Sednoids can be pro-
duced by a hypothetical Neptune or Jupiter-mass planet orbiting within the inner
Oort Cloud. They also found that a very eccentric Earth-mass planet with ¢ = 60 au
and low-i could also produce Sedna-like orbits. Lykawka & Mukai (2008) carried

out intensive numerical studies on the dynamical effects of a sub-Earth-mass planet
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beyond a > 100 au and proposed that to match several observational and dynamical
constraints, the hypothetical planet would have 0.3-0.7 Mg, with a = 175-250 au,
q > 80 au, and i = 20°-40°. They also concluded that the existence of 3:2, 2:1,
and 5:2 resonant TNOs implies that any hypothetical resident distant planet must
have an overall g > 80 au, and used this to rule out all previous models suggesting
resident planets with g < 70 au (e.g. Brunini & Melita 2002; Melita & Williams
2003; Melita et al. 2004; Brown et al. 2004).

The enthusiasm for an unseen planet in the outer Solar System was re-motivated
by the discovery of yet another TNO with g ~ 80 au - 2012 VP;;3 (Trujillo &
Sheppard, 2014) - and the claims of (debated) orbital clustering (also called orbital
alignment) for large-a TNOs (Trujillo & Sheppard, 2014; Sheppard & Trujillo, 2016).
Trujillo & Sheppard (2014) first proposed that the Kozai mechanism of an unseen
planetat 210 au can explain the clustering of w. The ‘observed orbital alignment’ also
prompted Batygin & Brown (2016a) to propose the so-called Planet Nine model,
in which a distant eccentric planet with mass 2210 Mg, imposes secular 2 and @
cycles onto distant TNOs and creates the orbital clustering. A series of subsequent
studies on Planet Nine (e.g. Batygin & Brown 2016b; Batygin & Morbidelli 2017;
Millholland & Laughlin 2017; Becker et al. 2017; Khain et al. 2018; Caceres & Gomes
2018; Batygin et al. 2019) have demonstrated that Planet Nine would impose the
following dynamical effects onto the so-called ‘extreme’ TNOs (in their definition,
a > 250 au):

1. The apsidal confinement of extreme TNOs,
2. perihelion detachment of extreme TNOs,
3. clustering of the a 2 250 au orbital planes, and

4. excitement of extreme TNO inclinations.

The reality of the distant TNO orbital clustering has been cast in doubt by outer
Solar System surveys that account for the significant observational biases, such as
OSSOS (Shankman et al., 2017) and the Dark Energy Survey (Bernardinelli et al.,
2022). In particular, Napier et al. (2021) analyses the joint detection probability of
the 14 distant TNOs discovered by OSSOS, DES, and Sheppard & Trujillo (2016),
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in which they find the €2 and w distributions of detected TNOs are consistent with
a uniform distribution and thus this sample provides no evidence for orbital clus-
tering, upon which the Planet Nine hypothesis was built.

Other still-present planet models include a hypothetical distant planet (a ~
665 au) in resonance with the four extreme TNOs (Malhotra et al., 2016) and a
close-in (a < 100 au) Mars-mass planet to account for the so-called ‘curious warp’
in the Kuiper Belt’s mean plane (Volk & Malhotra, 2017), although a later indepen-
dent analysis favors no such warp (Van-Laerhoven et al., 2019).

The gravitational effect of an unseen planet should be able to slightly perturb the
trajectories of Solar System planets, and thus high-precision measurements of their
positions by orbiting spacecraft provide important constraints to any still-existing
planetary-mass models. Based on the INPOP19a planetary ephemerides (Fienga
et al.,, 2019), the presence of a 5 Mg planet inside d < 500 au and a 10 Mg planet
inside d < 650 au is ruled out (Fienga et al., 2020). In a study carried out by Gomes
et al. (2022), the existence of a 5 Mg planet at d < 400 au, an Earth-mass planet
at d < 260 au, and a Mars-mass planet at d < 120 au is ruled out by data from
Juno, Cassini, and Mars-orbiting spacecraft. This basically rules out over half of the
already-reduced parameter space for the updated orbit of Planet Nine (with ~6 Mg,
and a ~ 400 au, Brown & Batygin 2021).

With the authenticity of the orbital clustering questioned and a large chunk of
the parameter space ruled out, the Planet Nine hypothesis and other still-resident
planet models seem less and less likely to be the explanation for structures in the

outer Solar System.

4.5.2 Rogue planets

The Solar System surprisingly lacks any ‘super-Earth’ planets (often defined as plan-
ets with radius between 1Rg, to 1.75Rg,), which are the most common type of planets
found in exoplanetary systems (Borucki et al., 2010). Moreover, given the fact that
four ~10 Mg giant planet cores (see Section 4.2) are present, and there must have
been at least 2,000 Pluto-sized planetesimals to explain the formation of the Pluto-
Charon binary (Stern, 1991), it is unnatural to believe that no planetary-scaled ob-

jects ever formed and temporarily existed in the early Solar System.
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A hypothesis that posits the presence of temporarily present but eventually ejected
planet(s) in the Solar System is commonly referred to as a ‘rogue planet model.
Ejected rogue planets’ are natural results of planet-planet scattering in planet for-
mation(Rasio & Ford, 1996; Weidenschilling & Marzari, 1996; Lin & Ida, 1997). It
is estimated that most likely 90%-95% of giant planet systems must have under-
gone planet-planet scattering in their past (see Raymond & Morbidelli 2022 and
references therein). Interstellar rogue planets are found in microlensing surveys;
the discovered rogue planets have a wide range of masses, covering the range from
Jupiter mass (Mrdz et al., 2019) to Neptune mass (Mroz et al., 2018) to super-Earth
mass (Mréz et al., 2019) and even Mars mass (Mroz et al., 2020).

Assuming one or more extra planetary-mass objects temporarily existed in our
Solar System, their gravity could have left permanent marks on the orbital dis-
tribution of small bodies, especially TNOs in the outer Solar System. Petit et al.
(1999) studied the effects of Jupiter-scattered rogues on the main asteroid belt and
Neptune-scattered rogues on the primordial Kuiper Belt. In their simulations, the
cold classical belt is completely destroyed by a Neptune-scattered Earth-mass rogue
that is born in the Kuiper Belt and whose aphelion stays Q < 100 au in their entire
100 Myr integration time. Morbidelli & Levison (2004) studied the rogue-planet
scenario for the creation of Sedna and 2000 CR 5. Their first simulation consisted
of 10 half-Earth-mass embryos scattered out by Neptune. They also considered a
non-scattering Earth-mass planet initially on an orbit similar to that postulated by
Brunini & Melita (2002), with a ~ 60 au, e = 0.2, and i = 6°, and integrated it with
low-e and low-i test particles between 60 and 90 au. Sedna was created in neither of
their simulations. Morbidelli & Levison (2004) thus claimed that the rogue planet
scenario cannot explain Sedna-like orbits, at least in the contexts they explored.

A more detailed study on the rogue planet theory was carried out by Gladman &
Chan (2006), in which the authors run several simulations with Neptune-scattered
rogues ranging from Mars mass to 2 Earth mass. Their simulations show that the
rogue typically exist for ~100 Myr before ejection, close to Neptune’s typical scatter-
ing timescale from Chapter 3. They demonstrated that orbits similar to Sedna can be

produced by the rogue once its mass m, > 1Mg. The dynamical excitation produc-

> A rogue planet existing in the interstellar space is also termed a free-floating planet or an inter-
stellar planet.
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ing detached TNOs was found to be dominated by the most massive object. They
also found detached TNOs produced by the rogue have maximum i as a declining
function of a, in apparent contrast to stellar flyby models which generically produce
large i for increasing small-body semimajor axes. The original Gladman & Chan
(2006) model was compared against OSSOS detections in Lawler et al. (2018b), in
which this specific rogue model overproduced a < 100 au detached TNOs. Glad-
man & Volk (2021) illustrated an unpublished simulation (their figure 8) from the
Gladman & Chan (2006) suite, demonstrating a 2Mg, rogue with g near Uranus is
also capable of creating orbital detachment from the scattering disk.

The rogue planet is a natural outcome of planet formation simulations and has
the promising effect of producing Sedna-like detached TNOs in the distant Kuiper
Belt. However, few extended studies since Gladman & Chan (2006) have been con-
ducted to explore the rogue’s dynamics or to check whether it fits into the updated
TNO inventory. As Kavelaars et al. (2020) wrote in The Trans-Neptunian Solar Sys-
tem: “Precursor simulations like that of Gladman & Chan (2006) should be revisited
in light of the new high-q TNO discoveries to date”

4.6 Important Metrics of an Outer Solar System Model

In this section, I will summarize the unsolved problems in the outer Solar System
that are difficult to explain by current models of planetary formation and migration.
Shedding light upon or even solving these problems is one of the main goals of this
thesis, and I will also use them as metrics to evaluate the likelihood of a Solar System

model, including the rogue planet model I will investigate in Chapter 5 and 6.

1. Distribution of detached objects

The a — g distributions of the detached objects is the most critical factor for
the rogue planet simulation. The rogue should be able to form most of the
discovered detached objects, including the three most-distant Sednoids (Ta-

ble 4.1) with moderate inclinations.

2. Detached objects near resonances

My preliminary simulations (Fig. 1.8) show that a rogue can perturb TNOs

from a=50-100 au into neptunian resonances that are hard to populate by
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planet migration (see figure 3 in Crompvoets et al., 2022). To my knowl-
edge, this dynamical effect has never been discussed in literature. It is worth
studying whether the rogue planet can provide some alternatives to planet

migration (e.g. Nesvorny et al. 2016) for various populations.

3. Ratio of detached vs scattering

An important metric is the population ratio of the detached and the scattering
components. Today’s scattering population is estimated to be eroded down to
only 1% of its primordial size (Duncan & Levison, 1997), while the detached
population is almost unchanged after the rogue’s ejection (Gladman & Chan,
2006).

Petit et al. (2011) estimated the number of D > 100 km objects in the outer
Kuiper belt (a beyond the 2:1 mean-motion resonance) is ~80,000 non-resonant
TNOs. These estimates are highly dependent on the assumed orbital distri-
bution, and the population could be much larger if there are many high-g ob-
jects. Lacking a consensus on the inventory of the detached population, UBC
undergraduate student Matthew Beaudoin estimated the population of the
detached Kuiper Belt (Beaudoin et al., 2023, submitted to PS]) as (5+2) x 10*
with H, < 8.66 (D > 100 km for a 4% albedo). Part of this estimate is based
on the detached orbital distributions produced by my rogue simulation in

Section 5.

4. Stability of the cold classical Kuiper Belt

The cold classical Kuiper Belt must survive in its present state and not be dis-
turbed by perturbing bodies like passing stars or rogues. In particular, the
Ifee < 4° (see Chapter 2) cold classicals must not be heated to unacceptable

degree.

In addition to these aspects used to judge the rogue planet theory, there are some
other aspects that may have links to the formation of the outer Solar System and is
worth looking at. Due to the uncertainty in some of the puzzles, these will not be

used as metrics to judge the model:
1. *Ratio of distant resonant vs detached
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Resonant population estimates (Gladman et al., 2012; Crompvoets et al., 2022)
show that distant resonances (i.e. neptunian MMRs beyond 2:1) host large
TNO populations, with some of the distant n:1 resonances comparable to
the 3:2. The populated distant resonances contradict predictions from mi-
gration models, whereas more in line with an intrinsic resonance-sticking
mechanism in the current scattering disk (Volk et al., 2018; Yu et al., 2018;
Crompvoets etal., 2022). The rogue planet’s effect on resonant TNOs is largely
unknown. It is also unclear how adding a temporarily-present massive body

will change the ratio of resonant vs detached in the distant Kuiper Belt.

. *Relations with Neptune outward migration

Recent outer Solar System surveys appear to establish that detached objects in
proximity of a resonance are more likely to be found in the sunward side (i.e.
a < ayes), rather than just beyond. There is growing observational evidence
for this (Lawler et al., 2019; Bernardinelli et al., 2022), and Neptune’s grainy
outward migration has been demonstrated to be able to create this asymme-
try (Nesvorny et al., 2016; Kaib & Sheppard, 2016). Its worth investigating
how Neptune’s interaction with a temporarily-present planet would shape its
migration path, which can be diagnosed through detailed orbital structures

in the Kuiper Belt.

. *Perihelion gap

Trujillo & Sheppard (2014) and Kavelaars et al. (2020) pointed out for the
range 150 < a < 1000 au, no objects have been discovered between 50 <
q < 75 au, though detectability is actually easier than for the g of the two
known higher-qg TNOs, Sedna and 2012 VP;;3. So far, the gap’s presence is
questionable and not statistically significant. If such a ‘g-gap’ (see Figure 1.9)
becomes more pronounced with further discoveries, a rogue planet scenario
could be undermined due to fact that the g oscillations that the rogue uses to
detach objects will fill the phase space up to the highest values of g. I have,
however, noticed that the my preliminary simulation in Figure 1.8 shows an
asymmetry in the a — q distribution, exhibiting a non-uniform density where

at a ~ 200-300 au there are many more high-g objects near g = 100 au than
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with g from 40-80 au, and thus perhaps there could be an explanation related

to the large-e nature of the rogue’s orbit.

4. *The formation of the Oort Cloud

Planetesimals scattered out by Neptune and/or Uranus to a > 1000 au will
feel the gravity of galactic tidal field and random passing stars, which can
raise their perihelia and send them into the Oort Cloud. Early simulations
with only 4 giant planets predict a large scattering population today (Dones
etal., 2004). The rogue planet, however, is likely to lift some scattering objects
to the detached zone (at smaller a than the inner Oort Cloud), thus decreasing
the size of the scattering population (see figure 2 of Lawler et al. 2017). The
possible influences of the rogue in the formation of the Oort Cloud is still

unknown.

To summarize, Table 4.2 compares existing outer Solar System formation hy-
potheses against confirmed observational constraints. In the next two chapters, I
will concentrate on the metrics and problems above to understand the rogue’s dy-
namics and constrain the possible pathway it might have taken until its ejection.
More specifically, Chapter 5 will highlight the rogue’s effects in the 50 < a < 100 au
Kuiper Belt, while Chapter 5 will focus on the rogue’s parameters and dynamical

histories.
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Table 4.2: Comparison between different outer Solar System formation hypotheses

a<48au | 48 <a<200au a > 200 au
Cold belt Detached Resonant | Sednoidsa,q  Sednoids i Curre.nt
clustering
Grainy Migration v v ? X X X
Stellar Flyby near-planar
Lo> ? ? < ?
(Birth Cluster) | 'min ~ 240au ' ' fmin S 40088 g o) '
Existing Planet
? ? ?
(Planet Nine) ' ' ' v % allq
Rogue Planet TBD TBD TBD v (TBD) /(TBD) TBD

Note. ‘v’ denotes a hypothesis that satisfies the constraint or produces this feature, “x” denotes a hypothesis that does not
satisfy the constraint or produce this feature, and ‘¢ means unknown or no published studies. For grainy migration models,
only the creation of a < 100 au detached TNOs was demonstrated (Nesvorny et al., 2016). The two stellar flyby rmi, con-
straints come from Adams (2010) and Batygin et al. (2020), whereas the ‘near-planar flyby can make Sednoids that match
their observed inclinations’ assumption is only postulated but never demonstrated. The rogue planet model here represents
the preliminary study by Gladman & Chan (2006), and “TBD’ denotes aspects will be studied in Chapter 5 and 6; Declining
inclinations with larger a were observed, but the statistics were poor. The orbital clustering of currently-discovered a > 200 au
TNOs, which is the motivator of the ‘Planet Nine” hypothesis, is not supported by observational evidence (Shankman et al.,
2017; Napier et al., 2021; Bernardinelli et al., 2022).



Chapter 5

A Rogue Planet Helps to Populate
the Distant Kuiper Belt

The orbital distribution of transneptunian objects (TNOs) in the distant Kuiper
Belt (with semimajor axes beyond the 2:1 resonance, roughly a = 50-100 au) pro-
vides constraints on the dynamical history of the outer solar system. Recent studies

show two striking features of this region:

1. a very large population of objects in distant mean-motion resonances with

Neptune,

2. theexistence of a substantial detached population (non-resonant objects largely

decoupled from Neptune)

Neptune migration models are able to implant some resonant and detached objects
during the planet migration era, but many fail to match a variety of aspects of the
orbital distribution. In this work, we report simulations carried out using an im-
proved version of the GPU-based code GLISSE, following 100,000 test particles per
simulation in parallel while handling their planetary close encounters. We demon-

strate for the first time that a 2 Earth-mass rogue planet temporarily present during

This chapter is based on the following published work: Y. Huang, B. Gladman, M. Beaudoin &
K. Zhang, A Rogue Planet Helps to Populate the Distant Kuiper Belt. The Astrophysical Journal Letters
938, 123 (2022)
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planet formation can abundantly populate both the distant resonances and the de-
tached populations, surprisingly even without planetary migration. We show how
weak encounters with the rogue greatly increase the efficiency of filling the reso-
nances, while also dislodging TNOs out of resonance once they reach high perihe-
lia. The rogue’s secular gravitational influence simultaneously generates numerous
detached objects observed at all semimajor axes. These results suggest that the early
presence of additional planet(s) reproduces the observed TNO orbital structure in
the distant Kuiper Belt.

5.1 Introduction

The heavily studied main Kuiper Belt has semimajor axes smaller than the 2:1 res-
onance at 48 au (often taken to be the outer boundary of the classical belt). Be-
yond the 2:1, the transneptunian region seems not as abundantly populated and
is dominated by large-eccentricity (e) transneptunian objects (TNOs) in the scat-
tering (Trujillo et al., 2000; Lawler et al., 2018a), resonant (Gladman et al., 2012;
Crompvoets et al., 2022), and detached (Gladman et al., 2008) populations. This
apparent drop in TNO number is partly due to the observational bias that penalizes
orbits with large-a, large-perihelia (g), and large-inclinations (i). Deriving the in-
trinsic TNO orbital distribution at large semimajor axis requires well-characterized
surveys that properly handle observation bias. Modern surveys like CFEPS (Petit et
al,, 2011), OSSOS (Bannister et al., 2018), and DES (Dark Energy Survey; Bernar-
dinelli et al., 2022) all show evidence for an abundant population of a = 50-100 au
TNOs (referred to as ‘the distant belt’ here).

Studies that accounted for this bias (Gladman et al., 2012; Pike et al., 2015; Volk
etal., 2018) all concluded that the distant resonances are heavily populated. The dis-
tant n:1 resonances are particularly crowded, with populations comparable to the
closer 3:2 (Crompvoets et al., 2022). Similar estimates indicate that the detached
region hosts at least as many TNOs as the hot classical belt (Petit et al., 2011, Beau-
doin et al. 2022, submitted to PS]). All evidence points to an abundantly populated
distant Kuiper Belt whose inventory should be greatly improved by LSST (Collabo-
ration et al., 2009).

Neptune migration models have been proposed to create the distant resonant
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and detached populations. Hahn & Malhotra (2005) simulated Neptune’s smooth
outward migration into both dynamically cold and heated disks; neither case pop-
ulates the distant resonances as much as the 3:2 and 2:1. Gomes et al. (2008) real-
ized detached objects can be created during Neptune’s migration via Kozai q lifting.
Grainy Neptune migrations, in which Neptune’s a jumps due to planet encounters
(Nesvorny et al., 2016; Kaib & Sheppard, 2016), are also able to capture some scat-
tering particles into the distant resonances. Pike & Lawler (2017) bias a Nice model
simulation from Brasser & Morbidelli (2013) (where Neptune undergoes a high-e
phase during outward migration) using the OSSOS survey simulator and conclude
this model doesn’t produce large-enough populations for many distant resonances.
Crompvoets et al. (2022) suggest their recent resonant-population estimates disfa-
vor all migration models, as they under-populate the #:1 and n:2 resonances; instead
an underlying sticking of scattering TNOs to the resonances is preferred, although
the efficiency is too low (Yu et al., 2018).

Perhaps effects other than migration are important. Passing stars, even in very
dense initial stellar birth cluster environment, are ineffective perturbers inside 200 au
(Brasser & Schwamb, 2014; Batygin et al., 2020). One way to create high-g TNOs is
via the presence of additional mass(es), whose secular gravitational effect elevates
objects from the scattering into the detached population. The initial creation and
scattering of now-gone planetary-scale objects in the outer solar system is reason-
able (e.g., Stern, 1991; Chiang et al., 2006; Silsbee & Tremaine, 2018; Gladman &
Volk, 2021). Gladman et al. (2002) postulated that additional planetary-mass bod-
ies could account for large-q detached objects like 2000 CRj¢s. This evolved into
the ‘Rogue Planet’ hypothesis (Gladman & Chan, 2006) in which an Earth-scale
Neptune-crossing rogue planet (initially starting on a low eccentricity orbit) tem-
porarily present in the early solar system creates detached TNOs, even as far out
as Sedna; they showed that the perihelion-lifting effect is dominated by the sin-
gle most-massive object, which shares the typical 100-Myr dynamical lifetime of
Neptune-scattering bodies. Morbidelli & Levison (2004) explored several promis-
ing mechanism to explain the origin of Sednoids and concluded only the stellar-
encounter scenarios produce the most satisfactory results. Gomes et al. (2006) demon-
strated a distant planet orbiting within the inner Oort cloud is capable of raising the

perihelia of scattering objects and place them on orbits similar to Sedna’s. Lykawka
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& Mukai (2008) also proposed a resident trans-Plutonian planet (with a = 100-175
au, g > 80 au, and 0.3-0.7 Mg) to sculpt the Kuiper Belt and generate a substantial
population of detached TNOs.

In the context of solar system studies, ‘rogue planets’ refers to planets born in the
solar system that are scattered away from their formation location and could have
left behind orbital structures caused by their temporary presence. We point out the
same terminology is sometimes also applied to interstellar free-floating planets.

In light of the additional high-g TNO discoveries in the last 15 years, we revisit
the rogue planet hypothesis. We show that a rogue planet temporarily present on an
eccentric orbit sufficiently populates both the resonant and detached populations in

the a = 50-100 au Kuiper Belt, even without any planetary migration.

5.2 Dynamics from the 4 Giant Planets

To quantify the dynamical effects in the distant Kuiper Belt induced by the four giant
planets alone, we show a reference simulation with a synthetic young scattering disk.
100,000 test particles, starting from a=50 au, were placed followinga dN/da a= 2>
distribution.’

A uniform gp=33-37 au distribution was used to cover the current values of
scattering objects, but will allow us to post-facto explore the early scattering disk’s
parameters integration by weighting the g, values (Section 5.4). The initial inclina-
tion distribution follows sini times a gaussian of 15° width, the same distribution as
the hot main Kuiper Belt objects (Brown, 2001; Petit et al., 2011). All phase angles
(€2, w, and M) are random and orbital elements are always converted to the J2000
barycentric frame.

We integrated for 100 Myr, with 4 giant planets on their current orbits, using a
regularized version of GLISSE (Zhang & Gladman, 2022). This modified integrator
GLISSER can propagate ~10° test particles on a GPU, while resolving close encoun-
ters with planets on multiple CPU cores using many SWIFT subroutine calls (Levison

& Duncan, 1994). We have verified this integrator in several common test problems,

"We showed this with a simple Neptune scattering simulation in which initially low-e and low-i
objects near Neptune followed an a~** distribution at ~50 Myr. This is steeper than the longer-
term steady-state of dN/da o a~'?, predicted by a diffusion approximation (Yabushita, 1980) and
validated by cometary dynamics simulations (Levison & Duncan, 1997).
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Figure 5.1: a, g, i distributions of TNOs at 100 Myr in the reference simulation
(animated in the online video). The initial conditions have 33 < gy <
37 au (shaded green region). Arrows in the a, q panel illustrates the two
dominant dynamical effects in the scattering disk: horizontal Neptune
scattering (red arrows) and vertical resonant g lifting (blue arrows). The
three side panels show histograms for simulated g < 38 au (gray) and g >
38 au (blue) particles. At the simulation’s end, only ~1% of a = 50-100 au
particles have g > 38 au, with the vast majority being resonant objects
and almost none being detached objects. The superimposed real g >
38 au detached objects (black triangles) show an apparent concentration
near resonances (especially n:1 and n:2, labelled at top).

confirming it correctly handles the resonant dynamics, secular dynamics and scat-

tering dynamics. GLISSER provides final orbital distributions statistically identical

to those simulated by other standard orbital integrators like MERCURY (Chambers,
1999) and SwirT (Levison & Duncan, 1994).

The 100 Myr snapshot for the reference simulation’s movie is shown in Fig-

ure 5.1. We limit our comparisons to a = 50-100 au because this region has a mean-

ingful density of known g > 38 au resonant and detached objects, making a compar-
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ison feasible. With four giant planets, two dynamical processes dominate the scat-
tering disk. At q < 38 au, TNOs are steadily scattered due to their proximity at per-
ihelion passages to Neptune’s orbit; this produces horizontal movement (denoted
by red particles and arrows in Figure 5.1 for a few examples) on the (a, g) plot as
scattering TNOs random walk in a while approximately preserving g. Atlarger peri-
helia, where weaker Neptunian encounters less effectively change the TNO’s orbital
elements, the dominant dynamics occurs at Neptunian mean-motion resonances.
The resonances allow evolution to higher-q and higher-i orbits via the Kozai-Lidov
mechanism inside mean-motion resonances (Kozai, 1962; Gomes et al., 2008). The
perihelion evolution (blue dots and arrows in Figure 5.1) is clearly stronger along
n:1 and n:2 resonances. Unfortunately, the overall efficiency of the resonant g-lifting
effect is low, with only ~1% of a = 50-100 au objects reaching ¢ > 38 au in 100
Myr. Furthermore, we determined that almost every particle located in Figure 5.1’s
resonant spikes was initially within 0.3 au of the corresponding resonant center
meaning they by chance started resonant rather than being delivered to it. This
indicates that resonant sticking (a mechanism characterized by scattering objects
evolving through intermittent temporary resonance captures, Lykawka & Mukai,
2007) is not the main source of the high-g resonant TNOs. We will return to this in
Section 5.3.

Compared to real TNOs in the same region (black triangles and crosses in Fig-
ure 5.1), this reference model produces some resonant objects but barely any de-
tached objects, especially between the resonances at high g. This mismatch is un-
surprising because Neptune with a largely unchanging orbit is extremely inefficient
at detaching objects from the scattering disk (Gladman et al., 2002). Although res-
onance escape can (rarely) happen at high g without Neptune migration, Gomes
et al. (2008, figure 10) conclude that Neptune migration is needed to break the re-
versibility. Therefore, grainy migration models (e.g., Nesvorny et al., 2016; Kaib &
Sheppard, 2016) introduced moderate (~0.1 au) semimajor axis jumps to Neptune’s
migration history in order to detach objects from resonances by suddenly moving
the resonance borders. Nesvorny et al. (2016) show how grainy Neptune migration
results in greater resonance trapping and although they do not bias their numerical
results to see if the orbital distribution matches known TNOs, their detached pop-

ulation agrees with the recent observational measurement (Beaudoin et al. 2022,
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submitted).
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Figure 5.2: a, g, i distributions and histograms of test particles under 100-Myr
gravitational influences of a 2 Mg, rogue (initial a, = 300 au, g, = 40 au,
and i, = 20°) and the 4 giant planets. The online animated version shows
the entire evolution. Particles are color-coded based on their constantly-
evolving dynamical classes when they are above the red dashed line of g =
38 au. With a rogue present, the resonant population (yellow) is now 3
times larger than in the reference simulation. The detached objects (blue)
are created across all semimajor axes, with the high-g ones concentrated
near resonances (see the a histogram at the top). Depletions at strong
resonances are visible in the g < 38 au scattering disk (gray), due to the

rogue boosting the efficiency of resonant ¢ lifting.

5.3 Dynamical Effects Induced by the Rogue Planet

The letter presents a proof of concept that a temporarily present planet (called a

rogue) can create high-perihelion objects distributed similarly to the observed Kuiper

Belt, with sufficient efficiency to match observations and comparable to grainy mi-
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gration simulations. We added a m, = 2Mg rogue with an initial a, = 300 au,
qr = 40 au, and i, = 20° orbit to the simulation, and integrated it with the same
100,000 test particles to 100 Myr. The chosen rogue parameters (mass, semimajor
axis, and dynamical lifetime) were inspired by the preliminary study of Gladman &
Chan (2006) where the authors demonstrated such a rogue detaches objects from
the scattering disk through secular g forcing, but they had insufficient statistics to
examine the rogue’s role in populating distant resonances and detaching objects
from these resonances (which we find is the major dynamical mechanism populat-
ing a = 50-100 au). We set the rogue’s go=40 au to produce weak a, mobility over
the simulation, as we're concentrating on the new dynamics the rogue brings to the
distant belt, rather than exploring the enormous parameter space of possible rogue
histories. The TNO orbital evolution is displayed in Figure 5.2.

Each particle in Figure 5.2 is categorized into one of three dynamical classi-
fications of detached (blue), resonant (orange), and scattering (red), using its 10-
Myr dynamical history (Gladman et al., 2008) around a particular moment” in the
animated version of Figure 5.2. We encourage the reader watch the movie on the
journal website, which shows the constantly-evolving dynamical classes of each test
particles. Only g > 38 au particles are color-coded based on these classes; the
q < 38 au particles (gray) are less relevant to the problem we are exploring, as their
distribution is largely set by initial conditions.

One striking difference in Figure 5.2 is that the rogue’s secular effect detaches
TNOs directly from the scattering disk across all semimajor axes. This lifting is faster
at larger a; for TNOs with a < a, and orbital period P, the order-of-magnitude g
oscillation timescale P induced by the rogue is given by (Gladman & Chan, 2006):

Pec Mg ar\3 21\3/2
P (mr> (5) =, G

where e, is the rogue’s eccentricity. Fora2 Mg rogue with a, ~ 300 auand e, ~ 0.87,
Pgec for a = 50-100 au varies from ~1.5 Gyr to 500 Myr, longer than the ~100 Myr

dynamical lifetime of the rogue.

We detail a previously unreported dynamical effect that creates detached TNOs

*For example, the dynamical class at 100 Myr is based on the orbital history from 95-105 Myr.
Classification was performed at each 0.14 Myr output interval (except for the first 5 Myr).
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Figure 5.3: Dynamical evolutions of two particles initially near the 4:1 reso-
nance from the reference simulation (left) and the rogue planet simula-
tion (right). From top to bottom, the left axes of both plots are semimajor
axis (a), the 4:1 resonant angle (4.1, perihelion (q), and argument of per-
ihelion (w). The right axes are proximity of rogue encounters (denoted by
red X’s) and inclination (I). Without the rogue present, the Kozai mech-
anism (represented by w librating around 90° or 270°) is able to raise
resonant particle’s perihelion, but spontaneous decoupling from the res-
onance is highly unlikely. In comparison, the rogue helps build the de-
tached population by both pushing the particle into the resonance and
kicking it out at high g.

through a combination of Neptunian resonances and rogue encounters. We observe
that weak encounters with the rogue are continuously nudging TNOs in semimajor
axes, sometimes randomly pushing them into a nearby resonance from the scat-
tering disk. Similarly, rogue encounters are capable of kicking objects out of the
resonance; if this happens to occur at high perihelion after part of a Kozai cycle, it
naturally forms detached objects near resonances, especially near those with strong
q lifting effectiveness like #:1 and n:2. Both the resonant ‘pushing in’ and ‘kicking
out’ happen; our simulation shows the net effect is a 3x enhancement to the reso-
nant population (compared to Figure 5.1’s reference simulation), in addition to the

considerable quantity of detached TNOs formed around resonances. The power of
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the rogue-aided q lifting is visible in the deficits of scattering objects (gray dots and
upper histogram in Figure 5.2) at the resonant semimajor axes. Detached objects
with a < 80 au and g > 40 au seem to concentrate near resonances, as do real de-
tached TNOs (the movie illustrates these dynamics clearly). The resonance works as
a sort of ‘water fountain, constantly pumping the particles to higher g; meanwhile
the rogue supplies particles from the scattering disk, and ‘splashes” them to nearby
detached states along the resonances. Such fountain-like structures with a central
resonant population and surrounding detached population are visible near strong
resonances like 5:2, 3:1, and 4:1.

We selected a particle near the 4:1 from each of the two simulations and plot
their evolutions (Figure 5.3). The reference simulation’s particle (Figure 5.3a) is
initially inside the 4:1 resonance. It demonstrates a (rare) ~25 Myr Kozai cycle, en-
abled by w remaining near 90° initially and diagnosed by strong e and i coupling;
this lifts g from 37 au to 50 au and i from 20° to above 30°. Once Kozai stops (w
circulates), the still-resonant particle’s critical angle jumps back and forth chaoti-
cally between the two asymmetrical libration centers (Morbidelli et al., 1995), with
q and i remaining high. However, without additional disturbance (from a jumping
Neptune or external rogue), it is almost impossible to spontaneously decouple from
the resonance and thus become detached.

Figure 5.3b shows a case from the rogue scenario, but here the TNO is initially
near but not inside the 4:1 resonance. Each red cross (top panel) marks a time and
encounter distance with the rogue. These encounters nudge the particle’s a, thus
changing its resonant dynamical behaviour. At ~10 Myr, weak encounters move
the particle into the 4:1, beginning ¢ libration around ~270°. Interestingly, little
q and i evolution occurs until a deep encounter pushes the TNO into a part of the
resonant parameter space where Kozai activates. After several q and i oscillations
from 25-80 Myr, additional encounters at ~2 au distance kick the object out of
the resonance, leaving g ~ 50 au and i ~ 45°, creating a detached TNO near the
resonant border.

The juxtaposition of Figure 5.3’ two plots shows three dynamical effects the

rogue induces via encounters:

1. randomly pushing nearby non-resonant scattering disk objects into the reso-
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nance,

2. boosting the g lifting by supplying resonant particles into the parameter space

where the Kozai cycle operates, and

3. randomly kicking resonant particles out and forming part of the detached

population if this occurs at high perihelion.

Only a small faction of the N scattering objects (that intersect rogue’s orbit and
are near the mutual node) will be affected per rogue orbit. Over the rogue’s lifetime
the entire scattering disk can have rogue encounters because of mutual precession of
the rogue and TNO orbit. One can analytically estimate the accumulated encounter
number Ny closer than 3 Hill spheres’ as, assuming a highly-eccentric planet with

a large semimajor axis (derived in Appendix B.1)

2
Nenc ~6 62 T; my \3 < ar >;’ (5.2)
N 100 Myr 2Mg 300 au

where N is the number of TNOs between the rogue perihelion and aphelion, and

Nenc is the number of rogue encounters. For our simulations, the numerical inte-
grator logged the 5 < 1 encounters, recording ~5 encounters per particle in 100
Myr, in excellent agreement.

Each encounter perturbs different TNO orbital elements; we focus on the rogue’s
effect on semimajor axes, as the random nudges in a are what determine resonance
entrance and exit. In Appendix B.2, we estimate | Aa| for a typical rogue encounter

at SRy flyby distance as:

0.1 au my 3 a
|Aa| = 3 <2M@> <50au>‘ (5.3)

For a = 50-100 au, encounters at 1 Ry induce Aa ~ 0.1-0.2 au for the TNO, ap-

proaching the ~ +0.5 au width of the nearby resonances (Lan & Malhotra, 2019).
This allows encounters to knock TNOs in and out of resonance or shift them in-

side the resonance, allowing activation of Kozai cycling. Deeper encounters induc-

*Given the huge changes in the rogue’s heliocentric distance, a time-varying Hill sphere r{/m/3M
(where r is the solar distance when an encounter occurs) is used in both the numerical integrator and
the analytical analysis.
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Figure 5.4: a, q, i distributions of the detached (gray dots), the simulated de-
tections (red crosses), and the real g > 38 au detached objects (black
triangles). The intrinsic sample is built by the rogue and has been eroded
to 4 Gyr (only particles with initial go < 35 au are included in this plot),
on the basis of which the simulated detections are drawn using the OS-
SOS survey simulator. A decent correspondence between the simulated
and the red detached can be found on the three cumulative histograms;
a valid proof that the rogue is capable of creating the observed TNO dis-
tributions.

ing larger Aa do exist (Figure 5.3b), but Equation (5.2) shows encounters become

quadratically rarer with decreasing /5. An average TNO suffers a passage no closer

than 0.4Ry for Figure 5.2’s rogue.

These encounters greatly increase how many TNOs end up in the high-q region.

We find the rogue’s 100 Myr presence raises 10% of the a=50-100 au scattering disk

objects to g > 38 au, with 3% being resonant and 7% being detached. Compared

to the reference simulation, this rogue scenario emplaces an order of magnitude

more TNOs in the high-g region. We also did a preliminary exploration of varying

the rogue’s mass; two additional 100 Myr simulations show that 0.5 Mg or 1 Mg,
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rogues still populate the high-g region, but with lower efficiency (with 3.3% and
5.5%, respectively, of TNOs having g > 38 au). Both the rogue’s time T, intersecting
the belt and its a, and e, evolution history (Egs. 5.1 and 5.2) influences its sculpting

of the distant Kuiper Belt’s structure.

5.4 Estimating Observation Bias

The real TNOs in Figure 5.2 are more concentrated to low-a and low-g than the
distribution produced by the rogue. This is expected given observational bias which
favors them. Observation biases differ from survey to survey, but the first-order
effect for near-ecliptic surveys is that it penalizes large-a, large-g, and large-i orbits.

To verify whether our numerically simulated TNO distribution is similar to the
observed Kuiper Belt, we forward bias the numerical sample to compare it with the
real objects. Lawler et al. (2018b) details how this forward biasing is done using
a ‘survey simulator. Biases for resonant objects are complex to simulate, as their
perihelion passages are correlated to Neptune’s location, resulting in detection pref-
erentially at specific longitudes relative to Neptune (Gladman et al., 2012). Lacking
detailed pointing information for many past surveys, we do not compare to the res-
onant objects, instead focusing on g > 38 au detached TNOs.

We first eroded the surviving test particles for 4 Gyr with only the four giant
planets. That is, the rogue was assumed to be ejected after a typical dynamical life-
time of 100 Myr; in this case we manually removed it before the 4 Gyr integration.
The dynamical classification algorithm was then repeated to remove resonant and
scattering TNOs from the ¢ > 38 au sample, and the remaining detached TNOs
are plotted in Figure 5.4 (gray dots). The uniform initial gy distribution allowed us
to weight the sample post-facto and we found obvious improvement in the match
keeping only gy < 35 au (see below). We superpose 53 real detached objects (black
triangles); these TNOs were identified by Gladman & Volk (2021), consisting of the
OSSOS detached (Bannister et al., 2018) and other TNOs with sufficiently good or-
bits. We utilized the OSSOS survey simulator to generate 689 simulated detections;
a random 53 of them (the same as the real sample) are plotted (red crosses) to il-
lustrate the biases. Cumulative a, g, and i histograms for ~2800 intrinsic (model)

particles, the 689 simulated detections, and the 53 real objects are on Figure 5.4’
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side panels. Because detached TNOs from other surveys do not share the same de-
tection biases’ as OSSOS, this preliminary comparison is only approximate.

Figure 5.4’s cumulative distributions exhibit (perhaps surprisingly) similar trends
between the simulated detections (red) and the real detached objects (black). When
using all numerical initial conditions, the simulated a and g distributions have the
general trend of the real detections, but restricting to go < 35 au produces an ob-
vious improvement. We take this as evidence that much of the perihelion lifting
began at an early stage when the scattering disk was still developing; Figure 3 of
Gladman (2005) shows that in the first 50 Myr only g < 35 au orbits are populated,
only after ~1 Gyr do scattering TNOs extend up to g = 37. The superiority of
a more confined g distribution is verified in Beaudoin et al. (2022, submitted to
PSJ), who more rigorously compares with only the OSSOS objects; they show that
the g9 < 35 au detached TNO g distribution created by the 2-Mg rogue is non-
rejectable, with Anderson-Darling probability of 32% (and is in fact the best model
they studied).

5.5 Discussion

We demonstrate for the first time that a rogue planet present for ~100 Myr dur-
ing planet formation can abundantly create both the distant resonant and detached
populations, even without any planetary migration. This is accomplished by the
synergy of the Neptunian resonances (with the Kozai mechanism lifting perihelia)
and weak rogue encounters (where the rogue supplies the resonance and detaches
objects at high g). Several points merit discussion.

The Cold Classical Belt. A potential concern regarding the temporary presence
of Earth-scale planets is the possibility of dynamically heating the cold classical belt,
which is often thought to be formed in-situ and unexcited for the age of the solar
system. The observed limits on the e and i excitation are used to constrain Neptune’s
dynamical history (Batygin et al., 2011; Dawson & Murray-Clay, 2012; Nesvorny &
Vokrouhlicky, 2016), including the absence of planets formed in the cold belt itself

(Morbidelli et al., 2002). A rogue must have scattered to large a early, as even a few

*As an example, the Dark Energy Survey’s high-latitude coverage (Bernardinelli et al., 2022)
strongly favors high-i TNOs.
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million-year residence with a, ~ 50 au would excite the cold belt. Once the rogue
reaches a of a few hundred au, the average time it stays in the classical belt drops

by 613/2

(Equation 5.2), greatly reducing the cold-belt’s excitation. We confirmed
this with simple numerical simulation of just the cold classical belt, placing 10,000
objects with initial ey = 107> and ige. < 0.2° (Huangetal., 2022b) from ay = 42 au
to 47 au and integrated with the same rogue in Section 5.3. Even though the rogue
continuously crosses this cold belt” for 100 Myr, its gravity induces surprisingly little
excitation: the vast majority of cold TNOs keep e < 0.05 and ife < 1° (Figure 5.5).
We conclude a large-a rogue does not unacceptably excite the cold belt.

Oort Cloud Building. The period of the rogue’s existence will coincide with the
epoch in which the Oort cloud is created (Duncan et al., 1987; Dones et al., 2004;
Portegies-Zwart et al., 2021). Although in principle one might worry that an Earth-
scale rogue at 100 au could strongly interfere with the creation of the Oort cloud,
Lawler et al. (2017) show that the presence of even a larger 10 Mg, object in the 250-
750 au range for the entire age of the Solar System lowers Oort cloud implantation
efficiency by only a factor of ~2. The efficiency of Oort cloud implantation and its
mass are sufficiently uncertain (Portegies-Zwart et al., 2021) that there is no obvious
problem with the temporary presence of a rogue like we envision.

Sun’s Birth Environment. The rogue’s highly-eccentric orbit of a few hundred
au could be affected by close-in stellar flybys that could have happened in the Sun’s
birth environment. Arguments have been made that our Sun was likely born in a
cluster of 1000-3000 stars/pc®, based on extinct radionuclides and the assumption
that extreme detached TNOs, represented by Sedna, needed to be produced in the
birth cluster environment (Portegies-Zwart, 2009; Adams, 2010; Pfalzner, 2013).
The question is how quickly the Sun exited this birth cluster. If Sun remained for a
long time, there would be problems with retaining the Oort cloud (e.g., Morbidelli &
Levison, 2004; Nordlander et al., 2017). In addition, the recent study by Batygin et
al. (2020) computes an upper bound of number density-weighted cluster residence
of our Sun of 2 x 10* Myr/pc?, based on the unexcited inclination distribution of
the cold classical belt; this implies that the Sun must have exited its birth cluster in
less than ~15 Myr, using their 1400 stars/pc® estimate (Batygin & Brown, 2021).

Similar early exit arguments are given by Brasser et al. (2006) and Pfalzner (2013),

>For this specific rogue, 50% of the 100 Myr has one mutual node inside the cold belt.
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Figure 5.5: Orbital excitation of the cold classical Kuiper Belt, after 100 Myr
of perturbation from the rogue with a, g, i of roughly 300 au, 40 au, and
20°. Green points mark initial conditions, and red/blue points show final
values for particles that began with ay smaller/larger than 43 au, respec-
tively. From initial eg = 1072 and ige. < 0.2°, the surviving cold main
belt with ay > 43 au remains with low e and i. For ay < 43 au secular res-
onances (gs and sg) pump both e and i after which particles scatter to all
values of a along the Neptune crossing line (gray dashed). Repeating the
simulation using REBOUND (Rein & Liu, 2012) produces the same excita-
tions. Thus, the rogue does not unacceptably excite the cold belt, whose
TNOs currently have even higher values of e and i.

both of which suggest 5 Myr residence. The timescale for the rogue to reach several
hundred au is comparable to this ~10 Myr duration and we therefore think a 100
Myr survival timescale for the rogue is not problematic. Furthermore, the rogue’s
presence directly provides a way other than the Sun’s birth cluster to explain Sed-
noids (Gladman & Chan, 2006), which would alleviate the “need to make Sedna
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with passing stars” constraint (figure 7 of Adams, 2010; Pfalzner, 2013; Brasser &
Schwamb, 2014) in the Sun’s birth environment.

An Existing Planet. The natural 100 Myr ejection timescale for scattering rogues
(Gladman & Chan, 2006) sets a typical timescale that we have seen produces the
needed detached and resonant populations in the 50-100 au region. Instead of ejec-
tion, if the rogue’s perihelion was lifted (by an unspecified process) to very large g,
it could remain in the outer solar system today and negligibly affect the 50-100 au
region. Scenarios with a still-resident rogue (Sheppard & Trujillo, 2016; Batygin
etal., 2019) presumably began with that planet on low-q orbit for some period; that
combination of T}, m,, and a, (Equation 5.2) while g, < 100 au could produce the
same effects we study, before the mysterious g, lift. But given that recent surveys
(Shankman et al., 2017; Napier et al., 2021; Bernardinelli et al., 2022) do not sup-
port intrinsic clustering, we find the ‘now gone’ rogue scenario to be more natural.

Neptune Migration. It is generally believed that Neptune migrated outwards
during the planet-formation and disk-dispersal epoch (reviewed by Nesvorny, 2018).
The ‘grainy’ migration models are effective at creating detached TNOs when Nep-
tune’s semimajor axis jumps (and thus so do all its resonances) due to encounters
with dwarf planets; if the jumps become comparable to the resonance size (>0.1 au,
say), then some particles are suddenly no longer in resonance. A final phase of slow
net-outward grainy migration results in an asymmetry of ‘stranded’ particles on the
sunward side of the resonance (Kaib & Sheppard, 2016; Nesvorny etal., 2016). There
is growing observational evidence for this (Lawler et al., 2019; Bernardinelli et al.,
2022); after fixing an error in the Dark Energy Survey selection function (working
with Bernardinelli, private communication 2022), we combined the g > 38 au sam-
ples from these two studies and find that the binomial probability that the detached
number just beyond each resonance is comparable to those on the sunward side
remains <1%.

Regarding detachment, we find the rogue planet scenario produces comparable
numbers of detached TNOs. This is not too surprising, if one takes the view that the
rogue produces ‘grainy’ TNO jumps while grainy migration jumps the resonances.
In our case, Equation (5.3)’s Aa is set by the range of encounter distances and the
rogue’s mass, while in grainy migration models there is an assumed mass spectrum

of the bodies encountering Neptune (at a range of flyby distances). It is likely that
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after the rogue’s ejection there will still be moderately-massive scattering disk; dur-
ing its erosion a final small outward Neptune migration will then occur. This would
capture stranded TNOs on the high-a side of the resonance and continue ‘littering’
TNOs on the sunward side, giving an outcome very similar to migration alone.

A unique outcome of our study is that we have rigorously compared the sim-
ulation’s final orbital distribution to the known OSSOS TNOs, and find excellent
agreement (Beaudoin et al. 2022, submitted to PSJ), yielding a population esti-
mate of 40,000 detached TNOs with diameters >100 km, a number identical to
the Nesvorny et al. (2016) population estimate, who didn't have the information
necessary for rigorous orbital comparison. Additionally, having a rogue during this
period simultaneously allows the production of large-q objects like Sedna (Gladman
& Chan, 2006).

We expect that both processes operated in our early Solar System because it is
natural that objects between Pluto and ice-giant scale existed during disk dispersal.
The rogue’s presence introduces another mechanism to produce many features seen
in the distant Kuiper Belt. We believe that rogues and migration are both expected
outcomes of the process of planet building; the uncertainties introduced into deriv-
ing parameters (such as the migration duration and mass spectrum of other bodies

in the system) in future models which incorporate both seem unavoidable.
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Chapter 6

Rogue Planet Parameters

In Chapter 5, I demonstrated that an Earth-mass rogue planet temporarily present
in the early Solar System can help populate both the detached and resonant TNOs
in the 50 < a < 100 au Kuiper Belt. The study on this very specific problem
was prompted by the preliminary GLISSER simulation (Figure 1.8) with a fixed-
orbit rogue, in which the new dynamical phenomenon was first discovered. In this
Chapter, I will concentrate mainly on the secular g lifting dynamics the rogue will
impose on distant TNOs, first investigated in Gladman & Chan (2006) with numer-
ical simulations and hypothesized as a explanation for detached orbits. Specifically,
in Section 6.1, I build up the analytical tools to estimate the strength and timescale
of the secular forcing as a function of the rogue’s mass and orbit. This is then used
to derive the two critical constraints for a rogue-planet scenario, which are the cre-
ation of Sednoids and the preservation of an underheated cold classical Kuiper Belt.
Section 6.2 shows my preliminary explorations on the rogue planet’s possible dy-
namical route, and in Section 6.3 I numerically study the orbital distribution of the
distant Kuiper Belt sculpted by a scattering planet. In Section 6.4, I further erode the
most successful simulation in Section 6.3 to 4 Gyr, in order to simulate detections
with the OSSOS survey simulator and compare the rogue planet model against real
observations. In Section 6.5, I summarize the main results from the rogue planet

model and its cosmogonic implication.
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6.1 Dynamics Induced by an Distant Rogue Planet

The dynamical effects induced by a distant planet on TNOs can be divided into
encounter and secular effects. In this section, I study both effects using analytical

methods to constrain the parameters of the rogue planet.

6.1.1 Rogue Encounters

In Chapter 5, I discovered that weak encounters of the rogue assist both resonance
capture and orbital detachment near resonances in the early scattering disk. As
discussed in Section 4.5.2, the rogue planet is thought to be a temporarily-present
planet with g, near or inside the region of the giant planet (otherwise, it would likely
have survived the age of the Solar System and be a resident planet). While travers-
ing the early scattering disk, which helps populate resonant and detached TNOs, the
rogue planet also inevitably crosses the cold classical belt and disturbs the residents
within. Although Figure 5.5 shows that the rogue with a, = 300 au, g, = 40 au,
and i, = 20° would not unacceptably heat the cold belt in 100 Myr, it is necessary
to quantitatively estimate the cumulative effects induced by rogue encounters on a
wide range of orbits.

As derived in Appendix B, the induced orbital element changes due to rogue
encounters can be modeled as random walks, and the cumulative changes in q, e,

and i over the rogue’s residence time T, are given by:

1
A Tr 2 r r -1
’:‘czz|Ae|C:2|Ai|c~o.oos< ) (m )( ¢ ) T(6)

100 Myr 2Mg 300 au

where m, and a, are the planetary mass and semimajor axis.

The e and i excitations and semimajor axis mobility in the cold classical belt (a ~
45 au) induced by recurring rogue encounters (neglecting its secular effects) are
plotted in Figure 6.1. For the rogue parameters I used in Chapter 5 (T, = 100 Myr,
m, = 2Mg, and a, = 300 au), the excitations of the cold belt are | Ae|. ~ 0.002 and
|Ai|. =~ 0.1°, respectively. This explains why the e and i distributions are almost
unaffected by the rogue in Figure 5.5. Though the e and i heating produced by weak
encounters is negligible, this rogue, however, does nudge TNOs in semimajor axis

by ~0.2 au, which pushes some of them to nearby edges (i.e. the v3 and 4 secular
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Figure 6.1: Cumulative Aa, Ae, and Ai excitations of the cold classical belt
(a ~ 45 au) under repeated rogue encounters. These estimates are based
on Equations (B.19) and (B.20), assuming the rogue has a fixed orbit of a,
and was present for T}, with its perihelion g, always smaller than the inner
edge of the Kuiper Belt (thus it traverses the belt during its presence). The
four curves represent rogues with different parameters. Although none
of them unacceptably heat the classical belt’s e and i beyond the observed
values, the most massive rogue with m, = 20Mg (comparable to that of
an ice giant) can possibly mix the cold belt in semimajor axis due to the
non-negligible Aa it induced (red curve).

resonances on the left, and 2:1 resonance on the right, see Figure 5.5). If the rogue
planet is much more massive, say m, = 20Mg comparable to an ice giant, it will
likely displace TNOs in the cold belt by Aa ~ 1 au if it survived 100 Myr. Whether
this is an unacceptable level of cold belt perturbation is unclear; it is approaching
what seems to be the maximum.

In conclusion, the cumulative dynamical heating caused by rogue encounters to
the cold classical belt does not seem to be a problem. I will demonstrate in the next

section that the rogue’s secular heating provides a much more stringent constraint.
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6.1.2 Secular Effect

The secular dynamics of a highly-eccentric planet in the distant Kuiper Belt has been
intensively studied in the development of the Planet Nine hypothesis (Batygin &
Brown, 2016a; Beust, 2016; Batygin & Morbidelli, 2017; Batygin et al., 2019). Here,
I follow a similar methodology based on the Hamiltonian formalism (Section 1.1.2)
to derive some analytical results for the rogue planet. Unlike the Planet Nine theory,
which focuses primarily on the orbital clustering and high-inclination dynamics of
distant TNOs, I will highlight the secular g raising effect (which is related to the
apsidal alignment e — Aw dynamics in Planet Nine discussions) brought by the
rogue planet.

I start by writing down the instantaneous Hamiltonian between the test par-
ticle (a, e, w) and the rogue planet (a,, e,, @, m,) in the framework of the planar
restricted three-body problem (Morbidelli, 2002; Beust, 2016):

2 /
1) 1 r-r
/leanar = YW — Hr <, - 3>7
LS r—r] 7 (6.2)

. Vv
Keplerian term Disturbing function R

where pio = GMg,. r and 1’ are the heliocentric radius of the test particle and of the
rogue, respectively. The corresponding canonical variables related to Hpjanar read

(see Equation 1.14)

A= uea, A=M+w,
P =i (1-V1-¢), PR (6.3)
Averaging Hplanar OVer the fast angles, one obtains
7 B M 1 :
Hplanar = oA 1 ?{j{ Y- r’\d)\ dX, (6.4)

where ﬂplanar] is now independent of both longitudes A and )/, and the system is
reduced to one degree of freedom (given w, is constant in the restricted problem).

Therefore, the rate of change in semimajor axis is zero (@ = 0), and the constant

"The r - r'/ 7 term in Hplanar (the indirect term) is a non-inertial contribution resulting from
pinning the reference frame to the central mass (Touma et al., 2009). The averaged indirect term over
the planets fast angle (\') is zero (Morbidelli, 2002) and thus can be eliminated in Equation (6.4).
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2

Keplerian term — ;% can be removed from the secular Hamiltonian. The governing
Hamiltonian attributed to the rogue planet is
H =t L dray 65
sec, rogue — _471'2 ’I‘ — I‘/‘ . (6.5)

In reality, both the TNO and the rogue planet are perturbed by the giant planets.
The long-term evolution of objects can be understood using the secular perturba-
tion theory (Murray & Dermott, 1999). If one ignores the orbital eccentricity and
inclination of all the planets, to quadrupole order the Hamiltonian attributed to the

four giants * is:

8
1 pe N3 m;a;
Hgp = ———(1 — =, 6.6
a=—(1=e)72 ) (6.6)

where the index i denotes the i-th planet. The perturbation to the rogue has a similar
form (replacing a and e in Equation 6.6 with a, and e,). This Hamiltonian can be
used to calculate the expected TNO precession rate (o) when only considering the

gravitational effects of the giant planets:

_dp  OHce
dt  op’

8 2
_3 n Z m;a;
o 4(1 _62)2 e M@a2 ’

with the same expression giving the rogue’s precession v, with #,, e, and a,.

w =

(6.7)

Figure 6.2 shows the apsidal precession period (P, = 27 /@) for rogues/TNOs
on a wide range of orbits. For detached objects whose g (=35 au) are a few au’s away
from Neptune, P, varies from ~10 Myr to ~ Gyr (solid blue) over the 50-1000 au
semimajor axis range. For a > 250 au Sednoids with g ~ 80 au, precession periods
are so long (P5 ~ 1-10Gyr) that they only complete a few to no complete apsidal
cycles for the age of the Solar System (see, for example, figure 7 in Sheppard et al.
2019 for direct integrations of Sednoids in the current Solar System).

In order to incorporate the perturbation of giant planets into the dynamical

*Terrestrial planets are not as massive and are too far away from the distant Kuiper belt to be
considered.
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Figure 6.2: Apsidal precession period P, as a function of a for rogue plan-
ets/TNOs with various perihelia. The calculation was done using Equa-
tion (6.7), assuming giant planets are all on circular and co-planar orbits.
For g > 30 au (solid curves), Equation (6.7) should accurately describe
the apsidal precession of large-e orbits. For g < 30 au (dashed curves)
where the orbit intersects with that of Neptune (or other giant planets),
Equation (6.7) only serves as a reference since the object will get scat-
tered in a and the precession rate is not constant. P (and ) can differ
between objects with the same a by an order of magnitude depending on
their perihelion.

model, one needs to first add the direct perturbation Hgp into the secular Hamil-
tonian Hec:
Hsec,O = Hep + 7'lsec, rogue (6.8)

where the Hamiltonian is implicitly time-dependent due to the apsidal precession
of the rogue (i.e. non-constant w,) in the double integral (6.4). I thus perform a

canonical transformation with the generating function of the third kind
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Fs=Pw= P (w+ Aw ),

~~ (6.9)
old action new angle
and the new autonomous secular Hamiltonian is given by
OF:
Hsec(q)a Aw) = Hsec,O + 8737
t
8 2
1w _3 m;a;
R LY D + fioa (1-V1-2)
7{ 7{ d)\ N,
 4m? Ir —
(6.10)

where the corresponding new canonical variables are simply

d = /uca (\/l—ez—1>, Aw = w — w,, (6.11)

where Aw is the apsidal misalignment of the TNO and rogue.

Equation (6.10) is a one degree-of-freedom integrable system which describes
the apsidal alignment dynamics (i.e. the e — Aw coupling which is also the dy-
namics of g lifting) caused by an additional planet on a constantly precessing orbit.
However, Equation (6.10) cannot be fully expressed with orbital elements in closed
form due to the complexities of the integral. There are generally two ways of study-
ing Hsec in celestial mechanics: 1) analytical methods based on series expansion
of the rogue’s disturbing function, and 2) a semi-analytical method based on nu-
merically averaging the Hamiltonian and visualizing the phase portraits. The first
method can result in analytical estimates of the rogue’s g lifting capability (such as
the rate of lifting at various semimajor axis), but it only applies to rogue planets with
small eccentricities due to the inevitable truncation in the series expansions. The
second method works for arbitrary eccentricities, but analytical constraints are not
easy to obtain from the averaged Hamiltonian.

The secular disturbing function for the coplanar three-body problem can be ex-
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pressed as a infinite series (Murray & Dermott, 1999; Mardling, 2013):

00 Imax

o I, —(I41),
Reec = — Z Z Cn 2, My ol X (€)X, (= )m(er) cos(mAw), (6.12)
ar
m=0 Z:lmin
where « is the semimajor axis ratio, and Xé’m(e) and X, (Hl)’m(e,) are the Hansen
coefficients for the secular dynamics. The dimensionless power-series coeflicients
¢, ¢, and M do not depend on the orbital elements, while Xy depends on e; These
functions are defined in Mardling (2013); I will not go into details.
Expanding to octopole order (i.e. 3rd order in o), the disturbing function (6.12)

becomes

2 3.2 3 3.2
1/a 1+ Je 15 (a\” ee(1+ 3¢%)
Rsec,inner - & Z () 2 3 T T~ <> 4 5 COS(AW) s
2

r

h2,inner h3,inner

(6.13)

which is used for TNOs with semimajor axes smaller than the rogue’s (a < a,), and

1 /a3 1+3e 15 ra\4ee(l+ 3€?)
Rsec,outer - & - <l> 727; - <l> r74; COS(Aw) s
hz,outer h3,outer
(6.14)

which is used for TNOs with semimajor axes larger than the rogue’s (a > a,).

Replacing the last term of He. with the expanded disturbing function:

8 2
1 m;a; )
=Nt B (1
4 a — Moa
i=5 (6.15)
+ B (hy — hscosAw) ,
a

r

where h, and h3 are dimensionless and they are from either the inner or outer dis-
turbing function. Apparently, Hg.. depends only the single angle A, and thus
is integrable and fully describes the e — Az dynamics or distant TNOs under the
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influence of a co-planar rogue planet. An intuitive way to ‘visualize’ the dynamics
described by Equation (6.15) is through a series of phase-space portraits, which are
essentially contours of the governing Hamiltonian. For the purpose of my study,
it is better to re-project the phase portraits to the ¢ — Aw space. I plot Figure 6.3
and Figure 6.4 to depict the g-lifting dynamics on a wide range of semimajor axes.
The rogue planet used to make the two figures has m, = 2Mg, a, = 300 au and
qr = 40 au, which is the same one used in Chapter 5 to demonstrate its capability
of populating distant resonances.

a=50au a =100 au
250 250
150 150 Non-physical
__ 100+ Non-physical 100
§ 801 801
S 60 601
504 501
401 401
301 Planetary scattering 301
a =150 au a =250 au
250 250
Non-physical
1501 150 1
__ 1001 100 1
E 801 80
S 60+ - 601
50 X \ X 50
40 401
301 304
~180 -90 0 90 180  —180 —90 0 90 180
Aw (deg) Aw (deg)

Figure 6.3: Four g— Aw phase-space portraits for distant TNOs with the pres-
ence of a 2Mg planet on a, = 300 au and g, = 40 au orbit. Blue solid
curves represent orbits that are apsidally confined with respect to the ec-
centric planet (i.e. Aw libration), whereas dashed curves denote apsidal
circulation. The bold red denotes separatrix that divides these two cases.
Red shading g < 30 au orbits which will be prone to scattering by Nep-
tune, while gray shades represent non-physical orbits with g > a. Crosses
and dots in the third panel shows the initial conditions and correspond-

ing dynamical trajectories of numerically-integrated test particles under
the same planet.

Figures 6.3 shows the g — Aw coupling inside the rogue’s orbit (a < a,), corre-
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Figure 6.4: Same as Figure 6.3 but with TNOs outside the orbit of the rogue
(a > a,).

sponding to the disturbing function of (6.13). As shown in the first panel, the rogue
planet barely affects the a = 50 au region, in which the Hamiltonian contours show
apsidal precession (denoted by the circulation of Aw) with no significant g oscilla-
tion. By a = 100 au, the rogue’s presence is clearly visible in the phase portrait. It
induces a ~ 20 au q oscillation in the circulation zone (dashed curves) while creating
a q — w libration island centered on Az = 0° (blue circles, surrounded by the red
separatrix). The same dynamical phenomenon can also be seen in Batygin & Brown
(2016a)’s figure 3, for different planet parameters. The libration region enlarges as
a increases (panels 3 and 4), with the secular equilibrium point (the center of the
blue circles with Aw = 0) sinking into the planetary scattering zone of g < 30 au.
At a = 250 au, there is hardly any difference in the topology of the Aw ~ 0°
and Aw ~ 180° regions, and the separatrix dividing the libration and circulation
approaches two vertical lines at Aw ~ £90°.

I also integrated three near co-planar test particles with ap = 150 au and qp =
50 au under the gravity of the same planet and superposed their dynamical trajecto-

ries on Figures 6.3’s third phase portrait. Even though the rogue planet crosses the
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orbits of the three particles and strictly speaking the series expansion method is no
longer suitable, I argue that at several hundred au, the spatial volume becomes so
large that rogue encounters are ineffective at perturbing particles (see Section 6.1.1).
As a result, the phase portraits obtained through expanding the disturbing func-
tion given in (6.12) are still good approximations to the more complicated problem.
This explains why the numerical trajectories basically follow the level curves in Fig-
ure 6.3.

Figures 6.4 shows the dynamics outside the rogue’s orbit (a > a,), correspond-
ing to the disturbing function of (6.14). Unlike the inner case, these phase portraits
show no stable equilibrium point or libration zone in the plotted area. The sepa-
ratrixes for a = 600, 800 and 1500 au connect the two unstable equilibrium point
at Aww = £180°, and also separates the circulation zone at very large perihelion.
Although the planetary secular effect can always be felt at larger g, for this particular
rogue, its g-lifting ability is limited to g < 200 au for a > 800 au.

The q — Aw phase portraits are useful because they show the maximum g-
raising ability by the additional massive body. That is, given enough time, what
oscillations the planet secularly forces at various semimajor axes. What I focus on
in this thesis, however, is an only temporarily-present planet that may also have
migrated significantly in a, whose accumulated effect cannot be fully accounted for
by static phase portraits. Therefore, it is more practical to estimate the instantaneous
rate of change of g for a variety of rogue orbits.

I start by writing down the equation of motion for @, using the closed-form

secular Hamiltonian (6.15):

dg o a/Hsec
At~ 0Aw’
e, (6.16)
= ——hssinAw
ar

where A3 is the second dimensionless constant in Equation (6.13) or (6.14), depend-

ing on whether the particle is inside or outside the rogue. Using the definition of ®
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in (6.11) and the fact a = 0 in secular dynamics:

do _ a9 de
dt  de dt’

(e N (6.17)
fo (1_62)% dt’

Equating (6.16) and (6.17), I obtain two formulas for the rate of e change:

4
. my a 15 3, o1 er ,
e =—n|— —(14+-e)(1 —e*)2——— | sinAw, 6.18
<o = <> [16( O (¢4
and
. m a\3 |15 1 3 .
€|a>ar = M(;]’l (;r) |:16(1_ez>2€r(1 + 4@%):| sinAw. d (619)

As the final step, I replace e with 1 — g/a and é with —g/a to rewrite (6.18) and

(6.19) as functions of a and g:
q = —a|émax|SINAT = Gaxsin(—Aw), (6.20)

in which gmay is the amplitude and denotes the maximum g rate of change (for
Aw = —90°) and énax is the amplitude of é. Equation (6.20) shows that g for
different initial A varies from —gmax t0 gmax, with the Aw ~ —90° particles be-
ing lifted the fastest and forming the upper boundary in the a-q space, as perihelia
initially rise. This matches Fig. 6.3’s behaviour.

Itested Equations (6.18) and (6.19) against N-body numerical integrations. What
I find, however, is that both equations significantly overestimate the g for high-e ob-
jects. With the power series truncated to the octopole order, the expanded distribu-
tion functions (6.13 and 6.14) cannot accurately describe the dynamics in the limit
of e — 1and e, — 1. This can be also be understood from Equations (6.18) and
(6.19) directly, where both expressions contain a 1/(1 — e%r)) singularity, resulting
in an exploding ¢ at large e which does not reflect reality.

Instead of expanding the disturbing function to higher orders, which would dra-

matically increase the complexity of the problem, I experimented with a variety of
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simplified model simulations with different planetary parameters (e.g. Figures 6.5

and 6.6) and summarize the following attributes related to the secular dynamics:

1. The maximum q lifting happens near a = a,.

2. qis not a strong function of g, which means large-e scattering TNOs are get-

ting lifted in near constant rates regardless of their eccentricities.

3. g is not a strong function of g,, either. In other words, as long as the planet’s
perihelion is inside the semimajor range one is interested in (i.e. g, < a), the

q doesn’t significantly depend on g;.

With these properties in mind, I have found that a fairly close gmax approxima-
tion can be obtained by positing e = 0 in Equation (6.19). This essentially erases
the singularity in (6.19)’s denominator, and corresponds to the secular dynamics of

circular and co-planar orbits:

. m 3
Gmax ™ M—;naa3(e, + Zef), (6.21)
where
4 ifa<a
a=1{% " (6.22)
&, ifa>a,

which is the semimajor axis ratio between the inner and the outer bodies. Equa-
tion (6.21) is linear in m,, with only weak dependence on g,. This can be seen from

the eccentricity factor:
7 5q 3 2

in which the leading factor is a constant that varies only by a factor of two for g, /a, <

0.4, and usually for rogue planets I consider g,/a, < 0.2. gmax is thus proportional

to:
-3 25 .
) m, a,a>>, ifa <a,
Gmax X (6.24)
m, aa>> ifa > a,.
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In the assumption that the initial scattering TNOs are distributed in a with a roughly
constant gp =~ 30-35 au (see Section 3 for the scattering dynamics), one can describe

the upper boundary of the small-body a-q distribution as a function of g and t:

q(t) =qo+t Qmax(a)a (6.25)

where t is the time during which a planet (on a roughly constant a,) imposes secular
oscillation on scattering objects, and gy is the initial perihelion for an un-detached
scattering disk.

In Figures 6.5 and 6.6, I compare this approximate analytical solution to GLISSER
simulations with a fixed rogue (see Section 6.3). More specifically, the first simula-
tion is conducted with a 2 Earth-mass rogue with initial a, = 400 au and g, = 50 au,
while the second one has with a 5 Earth-mass rogue with initial a, = 800 au and
gr = 60 au. The initial conditions contain 50,000 initially low-i test particles, uni-
formly distributed in semimajor axis, with qo = 32-35 au. These test particles have
randomly-chosen phase angles (w, 2 and M) and thus cover Aw from —180° to
180° with respect to the rogue’s apsidal line. They were then integrated along with
four giant planets and their respective rogue (orange cross) for 100 Myr.

As shown in Figures 6.5 and 6.6, both the interior (a < a,) and exterior (a >
a,) boundaries (blue dashed curves) match the upper envelopes of the particle a-gq

distributions (black dots) at various times. The interior envelope is close to g o a°,

—3-3 analytical prediction (Equation 6.24).

while the exterior one is close to the g o< a
At certain distances (e.g. 200 < a < 400 au and 900 < a < 1200 au in Figure 6.6),
the maximum ¢ lifting rate is underestimated, but by less than a factor of 2. It is
thus a reasonably good approximation to the secular dynamics induced by a highly-

eccentric planet.

6.1.3 Analytical Constraints from the Making of Sednoids

In a rogue-planet scenario where the vast majority of high-g TNOs were created
by the temporarily-present secular forcing, constraints on the rogue’s mass and res-
idence time can be obtained from the requirement of making the three most de-
tached TNOs: 2012 VP;3 (a = 262 au, g = 81 au, i = 24° in barycentric ele-
ments), Sedna (a = 506 au, g = 76 au, i = 12°), and Leleakihonua (a = 1090
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Figure 6.5: The three panels, from top to bottom, show the t = 20, 50, and 100
Myr a-q distribution of simulated TNOs (black dots) under the influence
of a m, = 2Mg, a, = 400 au, and g, = 50 au planet (orange cross). Test
particles are initially placed uniformly in a box of 50 < a < 1000 au
and 32 < g < 35 au. The red dashed line denotes ¢ = 30 au which
corresponds to strong Neptune scattering, whereas the left and right blue
dashed curves are upper boundaries of the distribution, computed at dif-
ferent a and t using Equation (6.25) (see text for details). My analytical
solution (6.21) provides a decent estimate to the maximum forced secular
q lifting induced by the perturbing planet.
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Figure 6.6: Same as Figure 6.5 but with a rogue planet with m, = 5Mg, a, =
800 au, and g, = 60 au.

au, g = 65 au, i = 12°, collectively known as Sednoids; See also Table 4.1 for other
high-q TNOs.

In a rogue scenario, the innermost Sednoid - 2012 VP;;3 — was likely lifted by
an exterior rogue (a, 2 250 au). This is because million-year-scale presence of a
planetary mass inside ~200 au will rapidly detach the a = 50-200 au Kuiper Belt,
creating an overabundant high-g population in this a range that is more likely to
be found than a > 200 au detached objects (see Section 6.3.2 for details about this
constraint). The outermost Sednoid — Leleakithonua - was studied in Sheppard et

al. (2019), who integrated Leleakithonua’s orbit in a couple different physical ap-
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proximations. They found this object is rather stable for the age of the Solar System,
even in situations incorporating galactic tides and passing stars. The current galactic
environment only induces a ~10 au q oscillation (their figure 7), which cannot pro-
duce its g = 65 au orbit from gy ~ 30 au. In a rogue-planet scenario, Leleakithonua
was likely lifted when the rogue was inside its orbit (a, < 1000 au), because a scat-
tering planet beyond ~1000 au only exists for a short period of time (<100 Myr
for Neptune-scattering and <500 kyr for Saturn-scattering, see Figure 3.2) before
its ejection. The case for Sedna is more complicated. Its ~500 au semimajor axis is
common value for a hypothetical scattering planet, so either the interior and exte-
rior secular effects could have contributed to its high g.

To estimate the required timescale and planetary mass, I assume all of them were
initially Neptune-scattered objects with go ~ 30 au. Once they came close to their
current a (which probably took 10-100 Myr), the rogue detached them from the
scattering disk until the removal of the planet. The rogue planet is a scattering planet
with constantly-changing a (otherwise its a still-present planet model, not a rogue
planet model) and, to the lowest order, I can pin down its parameters assuming it
has fixed a, and gq,. Rearranging Equation (6.25), I obtain

tno — 4o
ttno = %, (6.26)
where ti, is the least amount of time required to make a particular high-g TNO

from the scattering disk. The timescale for making 2012 VPy;3 is

50 au
tVP113 ~ q | 250 )
max|a— au
N . , (6.27)
> 12 Myr (2 ( s ) . ifa, > 250 au.
2Mg 250 au
For Leleakuihonua
35au
telea 2 ma
max |a— au
(6.28)

> 17 Myr (2 ( ar ) . ifa, < 1000 au,
2Mg 1000 au
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and for Sedna

45 au
fSedna Z I rE—
Jmax|a=500 au
- c ) (6.29)
Z 15 Myr <2Zr > (508 au) ; lfar > 500 au,
ar - .
© (soo au) , ifa, < 500 au.

Figure 6.7 shows these three timescales calculated for 0.2 Mg, (Mars-scale), 2 Mg,
(Earth-scale), and 20 Mg, (ice-giant-scale) rogues. The left panel displays the least
amount of time required for making 2012 VP53 (solid lines) and Leleakihonua
(dashed lines) at various a,, while the right panel shows that for Sedna. Taking the
2 Mg rogue (orange curves) as an example, when the rogue has the semimajor axis
of a, = 500 au, both the VP;;3 and Leleakithonua production timescales are close
to ~100 Myr, whereas the Sedna production timescale is only <20 Myr. In other
words, the creation of Sedna is a less stringent constraint (at least for 400 < a, <
800 au) compared to the production of VP;;3 and Leleakithonua. However, taking
into account that Leleakithonua (with a ~ 1100 au ) may have been influenced by
stellar flybys (Sheppard et al., 2019) or chaotic diffusion (Bannister et al., 2017) in
the past, the constraint of making Leleakiihonua is thus ‘optional’ for a rogue-planet

scenario.

6.1.4 Analytical Constraints from the Cold Classical Belt

Another constraint can be obtained from the low dynamical excitation of the cold
classical Kuiper Belt. Dawson & Murray-Clay (2012) point out in their figure 3
that the cold classicals between 42.5 and 44 au are confined to e < 0.05, while
cold classicals between 44 and 45 are confined to e < 0.1. Cold classicals in these
two regions are less eccentric than the survival limit of the current environment,
which was used by Dawson & Murray-Clay (2012) to constrain the past evolution
of Neptune’s eccentricity. Thus, I can constrain the maximum residence time of a

rogue planet with Equation (6.21). To do this, I assume the maximum eccentricity
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Figure 6.7: The least amount of time required for a rogue planet to make
the three most-distant Sednoids: 2012 VPj;3 (left panel, solid lines),
Leleaktihonua (dashed lines) , and Sedna (right panel). These timescales
are computed using Equations (6.27) to (6.29). Notice that the timescale
for making Sedna is generally shorter than those for the other two objects,
which means it is a less strict constraint among the three.

heating at 44 au is e < 0.1, which corresponds to the maximum Ag < 4.4 au:

4.4 au
tcc S -
qmax|a:44 au ’

m, \ a 3 3 -1
< 9 Myr 4 ( 4 ) e, + ~é ,
2Mg 100 au 4

where I keep the eccentricity factor as its original form, due to the reason that at

(6.30)

lower a,, e, is no longer close to 1 and the rogue g, will affect the secular dynamics.
Figure 6.8 shows the maximum rogue presence time, as a function of a,, that will not
overheat the cold classicals (solid lines). In comparison, I also overlay Figure 6.7’
minimum timescale for simultaneously producing Sedna and VP; 3 in dashed lines,
and the shaded regions between the two constraints give the allowable parameters
for rogues with different masses.

All the constraints obtained so far assume the rogue planet is on an orbit with

fixed a, and g,. This assumption is an over simplification, though it provides a

151



1 m;=0.2 Mg, q,=30 au
456G m,=2 Mg, q-=30 au
— m;,=20 Mg, q,=10 au
161 N
U
100 M+ 4
s
8
© 10 M5
[¢]
@
= S
= I
1M+
Scattering timescale
100 k] at 370 au
] Scattering timescale
close to the planet
10 k4 J
40 50 60 7080 100 200 300 400 500600 800 1000
ar (au)

Figure 6.8: Solid lines show the maximum rogue presence time at various
semimajor axis constrained by the underheated e < 0.1 cold Kuiper
Belt, computed with Equation 6.30. Dashed lines show the minimum
timescales of making both Sedna and VP;;3 in comparison, which is
identical to Figure 6.7. The region confined by the two timescales define
the allowable zone for the rogue’s a, and the residence time correspond-
ing to that semimajor axis. Thin red lines on the left mark the scatter-
ing timescales of Jupiter, Saturn, Uranus, and Neptune for initially near-
planet objects, whose values are given in Figure 3.2. Those on the right
are the same timescales but for a, = 370 au (the semimajor axis where
the VP35 and Sedna constraints cross) objects. Different colors represent
rogues with different masses.
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good estimate to the rogue’s dynamics even if it is actually on a scattering orbit with
constantly-changing semimajor axis. For a scattering planet coupled with other gi-
ant planets, the rate of a, change and its dynamical lifetime depends on how strong
the scattering effect is, which is related to the perihelion distance g, and inclination
ir. In Chapter 3, I analytically derived the scattering timescale in a CRTBP model.
Assuming that the rogue’s mass is much smaller than its scatterer’s mass (the dy-
namics of two similar-massed bodies scattering each other cannot be approximated
by the diffusion approximation), the timescales for giant planets to scatter out the
rogue are shown in Figure 3.2. These timescales are also marked in Figure 6.8 as
thin red lines on the left side.

In Figure 6.8, a planet-scattered rogue must have its cold-belt constraint curve
(solid curves) above the corresponding planet’s scattering timescale (red lines) to
generally not overheat the cold belt. Asan example, m, = 20Mg rogue planet (black
lines) will excite the cold belt in <1 Myr ifa, < 100 au, which is longer than Jupiter’s
but shorter than Saturn’s scattering timescale. This is to say, a Jupiter-scattered ice
giant probably would not have overheated the cold belt given its extremely short
time scale to reach very large a (or ejection); this consistent with Batygin et al.
(2011)’s numerical result, where the authors showed that the ejection of the hypo-
thetical ‘fifth giant’ would not overexcite the cold classical belt. A Saturn-coupled ice
giant is not likely to satisfy this constraint because the ~2 Myr scattering timescale
is enough to heat the cold classicals to unacceptable degree. The result is that only
Jupiter-scattered ice giants and Saturn-scattered ‘Earths’ and ‘Mars’ can meet such
a constraint. Neptune and Uranus are too small to scatter even Mars-scaled objects
out to large semimajor axis without overheating the Kuiper Belt; this is consistent
with numerical simulations in Petit et al. (1999), where the authors demonstrate that
a Neptune-scattered planetesimal of a Earth mass would completely destroy the cold
belt. They also show that a Neptune-scattered planetesimal of mass 0.1 Mg would
leave a significant number of TNOs in cold belt, but that surviving belt would have
a significant fraction of the cold classicals with e > 0.1, which violates the current
observational constraint (see figure 5 in Gladman & Volk 2021).

Once a rogue planet is scattered to a few hundred au, its secular effect of heating
the cold belt is significantly reduced, whereas the g-lifting effect that form detached

objects is greatly strengthened. The shaded ‘allowable zone’ in Figure 6.8 represents
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where both the cold-belt constraint and the Sedna and VP;;3 constraints  are sat-
isfied. Taking the m, = 20Mg, rogue as an example, the gray allowable zone defines
the most-likely parameters for such a rogue when it is at large a,; and for this ice gi-
ant, the timescale varies from a few million years at a, ~ 400 au to several hundred
million years at a, ~ 1000 au. This time must also be in agreement with the scat-
tering timescale * of the corresponding scatterer, however. The required residence
time for an ice giant at ~500 au is roughly 2 Myr, an order-of-magnitude longer than
the ~0.3 Myr scattering timescale for a Saturn-scattered body at a, ~ 400 au (de-
noted by red thin lines on Figure 6.8’ right side). It’s evident from this figure that
the most-likely workable combination is a Neptune-scattered Earth-scaled planet
and an Uranus-scattered Earth-scaled planet is marginally acceptable.

Our analysis thus poses a seeming difficulty for the rogue planet scenario:

1. From the underheated e distribution of the cold classical belt, the rogue has
to be scattered out by Jupiter if it’s a ice giant, or by Saturn if it’s a super Earth
or Mars. A Neptune/Uranus-scattered planetary mass too slowly moves out

to meet the constraint.

2. The rogue must be only coupled with Uranus or Neptune while at large semi-
major axis, otherwise the timescale is not long enough to produce all Sed-

noids.

This conundrum, however, exists due to the assumption that, in the early Solar
System, scattered objects stick to their respective scatterers and there is no transfer
of scattering control from a gas-giant coupled orbit to an ice-giant coupled orbit. It
is well understood that many initially Neptune/Uranus-scattered objects are able to
penetrate the <10 au region and thus transfer scattering control to Saturn/Jupiter.
In fact, that’s how the Jupiter-Family Comets (JFC) are formed (Levison & Duncan,
1997; Kaib & Volk, 2022). The dynamics easily allow an initially Saturn-coupled,

Earth-scaled planet to be scattered to several hundred au within a few million years,

>The Leleakithonua constraint is not used in Figure 6.8 because it is considered an ‘optional’ con-
straint for the rogue planet model. See Section 6.1.4 for discussions.

*The scattering timescale in Figure 3.2 is computed for objects initially close to the planet, and
Equation (3.9) shows that this timescale is proportional to a -, one can thus expect a factor of ~4-8
decrease at several hundred au.
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thus preserving the primordial Kuiper Belt on its way out. Its control would then
need to be transferred to Uranus/Neptune (naturally or due to unexplored dynami-
cal effects), initiating a much slower random walk (generally outward) in semimajor
axis for the next few hundred million years, until its ejection.

In Section 6.2, I will perform numerous planetary simulations with an extra
planetary mass to better understand and constrain possible production mechanisms
of the rogue. Promising planetary histories will then be integrated with tens of thou-
sands of scattering test particles in Section 6.3, in order to produce an orbital dis-
tribution model of the distant Kuiper Belt that can be compared against real TNO

detections.

6.2 Planetary simulations with rogue planet(s)

The dynamical evolutional history of a now-lost planet has not been thoroughly
studied. Numerical simulations of a model with 5 or 6 giant planets (e.g., Nesvorny,
2011; Nesvorny & Morbidelli, 2012; Batygin et al., 2012) often focused on the evo-
lutions of extra planet(s) inside 30 au, while commonly ignoring their dynamical
paths at larger semimajor axes (say, a > 100 au). Silsbee & Tremaine (2018) con-
ducted N-body simulations to understand the production and possible retention
of distant planets from the source region of the giant planets. While the authors
claimed the likelihood of the presence of one sub-Earth mass embryo in the outer
Solar System, it should be noted that their simulations were limited to a small num-
ber of test particles (50 for each simulation) to examine perturbations to the Kuiper
Belt, and the conservation of a cold classical belt was never demonstrated.
Therefore, it’s necessary to carry out my own planetary simulations in order to
provide more insight into the possible dynamical histories of a temporarily-present
planet, with particular attention to its impact on the cold classical belt and the orbits
of giant planets. To do this, I integrated several sets of initial planetary conditions
with REBOUND’s MERCURIUS package (Rein & Liu, 2012; Rein et al., 2019b). This
package provides an optimized implementation of the original hybrid symplectic
method of the MERCURY integrator (Chambers, 1999), which is capable of handling

close encounters between planets.
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6.2.1 Rogues Scattered by Neptune

To start with, I first explore the possibility of producing a feasible * rogue history
with an initially Neptune-coupled m, = 2Mg planet. Two sets of REBOUND sim-
ulations were initialized with Jupiter, Saturn, and Uranus on their current orbits.
Neptune starts on a near-circular orbit with ay = 32 au, and the rogue has ini-
tial a,9 = 29.5 au and g,9 = 29 au for the first set of simulations (Sim-N-1),
and a,9 = 34.5au and q,9 = 34 au for the second set (Sim-N-2). I initialized
Neptune slightly outside its current orbits because given the rogue was predomi-
nantly scattered out by this gas giant, one would expect a net inward semimajor
change due to the ejection of the massive body. The estimated magnitude of this
change is given in Equation (4.8), in which a 2 Mg planet would likely result in
Aa =2Mg/(17Mg) x 32 ~ 4 au.

Each simulation set is composed of 360 simulations with randomized rogue
phase angles, which, due to the strong chaos embedded in the system, leads to com-
pletely different evolutional histories. These simulations were integrated with the
time step of 200 days, until the removal of the rogue or the maximum integration
time of 500 Myr. The rogue is considered ‘ejected’ when it reaches the heliocentric
distance of 3,000 au, a distance where torques from galactic tides are non-negligible
(see Figure 3.2). The possibility of the retention of the rogue planet in the Oort
Cloud is discussed in Section 6.5.

Figure 6.9 shows histograms of the rogue’s dynamical lifetimes in the two sim-
ulation sets. Both scenarios demonstrate relatively short rogue lifetimes, with the
median being 10 Myr and 50 Myr, respectively. Only 20% of the runs in Sim-N-1
(blue bars in Figure 6.9) and 35% of those in Sim-N-2 (red lines) have rogues liv-
ing longer than 100 Myr. Most of the rogues have survived much shorter than the
single-planet scattering timescale of Neptune of several hundred million years, as a
result of being randomly scattered inward and having perihelion coupled with more
massive Saturn and Jupiter. Stronger gravitational scatterings by either of these two
gas giants can then easily remove the rogue on the timescale <10 Myr.

Figure 6.10 demonstrates a rogue scattered into the Saturn-dominated region

(g ~ 10 au) as an example. It experienced strong gravitational scatterings as its

> A feasible rogue history is one that satisfies both the cold-belt constraint and the Sednoid con-
straint defined in Section 6.1.3.
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Figure 6.9: Distribution of the rogue’s dynamical lifetimes when initially cou-
pled with Neptune. The two 360-simulation sets (Sim-N-1 and Sim-N-
2) have the same initial conditions for giant planets (with Neptune at
ay = 32 au), and a 2Mg, rogue slightly inside of (Sim-N-1, blue bars)
or outside of (Sim-N-2, red lines) Neptune. Simulations ran for 500 Myr.
Most of the simulated rogues have dynamical lifetimes 5100 Myr (80%
and 65% for the two sets, respectively), with both histograms peaked at
<25 Myr that correspond to rogues that got scattered inward by Neptune
and then got rapidly ejected by Saturn/Jupiter (represented by the rogue
history shown in Figure 6.10). Only a small portion of simulations have
rogues that lived several hundred million years; examples of short-lived
and long-lived rogues are displayed in Figures 6.10 and 6.11.
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Figure 6.10: Planetary evolution histories of the four giant planets and a scat-

tering rogue planet, initially placed inside the orbit of Neptune and scat-
tered inward. The top panel shows the a, g (perihelia), and Q (aphe-
lia) evolutions of five planets (from top to bottom: the rogue, Neptune,
Uranus, Saturn, and Jupiter), while the bottom panel shows the rogue’s
inclination. The rogue experienced Neptune and Uranus scatterings in
the first 6 Myr, until it coupled with Saturn and temporarily with Jupiter
near t = 7 Myr. It then got scattered by Saturn, rapidly enlarging its
semimajor axis for ~8 Myr until its ejection.
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semimajor axis wandered between Neptune (red) and Uranus (orange) in the first
6 Myr, but a rapid subsequence of a jumps out to a of several hundred au did not
occur until it was g-coupled with Saturn (black) and temporarily with Jupiter (gray).
It then demonstrates frequent semimajor axis movement at large a due to strong
Saturn coupling for the next 7 Myr, until its removal at a > 1500 au. The reader may
find this evolutional history surprising as this Saturn-coupled planet has survived
longer than Saturn’s typical scattering timescale of ~1 Myr (Table 3.1). This is largely
due to its moderately large inclination of ~30° and 7Ts ~ 2.4, resulting in a factor of
~4 longer scattering timescale as given by Equation 3.36. Even with the dynamical
lifetime of ~10 Myr, a 2Mg, planet still cannot make Sednoids in time (Figure 6.8).

Compared to the Sim-N-1 group, rogues initialized outside Neptune’s orbit (Sim-
N-2 group) have a better chance of being scattered outward and generally survived
longer (see blue bars in Figure 6.9). This can better be understood through Fig-
ure 6.12. The left panel shows the mean and minimum rogue perihelion distance
(gr) of each simulation as a function of the rogue’s dynamical lifetime. Almost all
rogues ejected in <100 Myr have minimum g < 10 au. Rogues that survived the
entire 500 Myr integration tend to have minimum ¢, above 10 au, with average g,
(denoted by dots) coupled with Neptune at ~30 au. I find it also surprising that
the vast majority of rogues (including the long-lived ones) have minimum g, below
20 au, which implies that (temporary) Uranus coupling is prevalent in this type of
dynamical evolution.

One example of a long-lived outward-scattering rogue is shown in Figure 6.11,
in which the extra planet survives 2150 Myr. It first experiences ~25 Myr scatter-
ings among Neptune and Uranus, until a very proximate Neptune encounter swings
its orbit to 100 au (denoted by the huge jump in the rogue’s a history and the small
discontinuity in Neptune’s history in Figure 6.11’s top panel). After that, the rogue
keeps its g at ~30 au and demonstrates the ordinary scattering-disk object behaviour
of a random walk outward in a for ~100 Myr until its ejection. There are patterns
for the final orbit of Neptune depending on the rogue’s dynamical lifetime, shown
in Figure 6.12’ right panel. Each dot denotes Neptune’s ay rand ey rat the end of a
simulation, color-coded by the rogue’s lifetime (same as in the left panel). Shorter
rogue lifetimes (red and orange) are strongly correlated with an increase in Nep-

tune’s ay (caused by inward rogue scatterings which transfer control of the rogue to
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Figure 6.11: Same as Figure 6.10 but for a rogue planet initially placed out-
side the orbit of Neptune scattered outward. The rogue experienced
strong interactions with Neptune and Uranus for the first 25 Myr, un-
til a very close Neptune encounter ejected it to 100 au, after which the
rogue is only coupled with Neptune for the next 130 Myr. Its a walks ran-
domly with g just beyond 30 au. The rogue’s aphelion eventually reaches
3000 au.

the gas giants), whereas ay decrements (by outward rogue scatterings) only occur
for longer lifetime rogues (blue). In addition, because of gravitational interactions
(with rogues and potentially other giant planets), at the end of the integrations, Nep-
tune is more likely to be found with eccentricity higher than its initial value (denoted
by the red cross in Figure 6.12) and much higher higher than its current value (de-
noted by the black cross) °.

6Although I started the integration with a ey = 0.065 Neptune, in the hope that the rogue could
potentially circularize Neptunes orbit to its modern value (which never works), rogue simulations
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Figure 6.12: Dots in red, orange, and blue represent rogues with <25, <100,
and >100 Myr dynamical lifetimes, respectively. Left panel: Mean
(dots) and minimum (crosses) perihelion distance (g,) of each plane-
tary simulation (Sim-N-2) as a function of the rogue’s dynamical life-
time. Locations of the four giant planets are denoted by gray dashed
lines. Right panel: Final Neptune ay and ey at the end of each simula-
tion (Sim-N-2). Red cross marks the initial Neptune orbit (an o = 32 au,
en, = 0.065) used in simulations, whereas black cross denotes the real
location of Neptune (ay = 30.1 au, ey = 0.01). This simulation ignore
the dynamical damping of Neptune’s eccentricity.

It is worth pointing out that the drastic semimajor axis change in Figure 6.11’s
rogue history (from 30 au to 100 au) is extremely rare for a Neptune-scattered body.
After manually inspecting all evolutional histories, this is the only example display-
ing this level of a, change caused by Neptune. Additionally, the short rogue pres-
ence time inside 100 au has the good attribute of potentially not overheating the cold
classical belt. Thus, it is worth investigating whether or not such a ‘lucky rogue’ can
keep the cold belt alive.

With GLISSER, I am able to understand the dynamical evolutions of thousands
of test particles (which represent TNOs) under a certain planetary history. The
methodology is summarized as follows: For a planetary evolution history consid-

ered worth studying (e.g., that of Figure 6.11), I reintegrated the exact same plan-

with a near-circular Neptune also tend to heat up its eccentricity to above the modern value.
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etary initial conditions to generate a planetary lookup file that contains all plan-
etary orbital elements at every lookup interval. The lookup file was then used as
the planetary input to GLISSER, which then generates the Cartesian coordinates of
each planet at every time step by interpolating the orbital elements (see Section 1.2.2
for details). GrLissEr’s GPU algorithm can then compute the accelerations for test
particles, and propagate them under the standard Wisdom-Holman MVS method
(Wisdom & Holman, 1991) in parallel. Though the interpolation of planetary or-
bital elements brings extra errors to the integration, especially when the planet is
fast evolving (such as being scattered or experiencing fast secular oscillation), I find
when integrating with a reasonably large number of test particles and a relatively
short lookup interval, the orbital distribution GLISSER produced is highly similar to
those produced by a standard Solar System integrator, such as MERCURY (Cham-
bers, 1999, see Figure 1.7 for comparison).

I used Figure 6.11’s planetary history as the input of a GLISSER integration. In
this simulation, 3,000 test particles representing cold classicals were initialized from
40-50 au, with initial eccentricity ey < 0.001 and inclination iy < 2°’. They were
integrated with the time step of 200 days until the ejection of the rogue planet at
157 Myr. Figure 6.13’ two panels show two orbital distribution snapshots at 27 Myr
and at 157 Myr, respectively, in which green boxes on a — g and a — i panels roughly
mark the allowable orbits for cold classicals.

The first snapshot was taken right after the rogue was scattered to ~100 au, at
which point the vast majority of initially cold objects had already been dislodged.
This is presumably due to the gravities of both Neptune and the rogue. As shown in
Figure 6.13, there was a period of several Myr when Neptune’s aphelion extended
to 40 au, and the rogue’s aphelion transiently went as far as 100 au, because of their
strong mutual interactions. The resultant secular forcing and gravitational scatter-
ing have overheated the cold belt, essentially expelling most primordial planetes-
imals out of the region. The heating and dislodging in the cold belt did not stop
when the rogue jumped to 100 au and wandered between 100 to 200 au for the
next 80 Myr. The second snapshot of Figure 6.13 shows that the rogue’s presence
at a, ~ 100-200 au essentially cleared the cold belt, with only ~10 (0.3%) particles

7 Although a better way to initialize the cold belt is doing it on the free inclination space, I here
generated their initial o with respect to the ecliptic for simplicity.

162



Time: 27 Myr

o
o

<7
S/Q

55

50
45
40

q (au)

35

30 Ax Nep_t.une“-' E

25—
20}

I (deg)

30 35

Time: 156 Myr

~
& N

| %

55

50
45
40

q (au)

35

30 ‘x Neptune =~ - = . o B _ Rogue —
25 '
20

I (deg)

60

Figure 6.13: GLISSER simulation snapshots showing the destruction of the cold
classical belt by a Neptune-scattered rogue. The two green regions on the
a—qpanel represents e < 0.1 (dark shaded) and e < 0.15 (light shaded),
respectively, while the rectangular box on the a — i panel represents i <
5°. They indicate the rough boundaries for cold classicals. The red cross
marks the elements of Neptune, whereas the rogue’s location is beyond
the plotted region (denoted by the blue right arrow). The red dashed line
indicates where ¢ = ay. Top: The orbital distribution at 27 Myr, right
after the rogue was scattered to ~100 au. The vast majority of initially
cold particles have been significantly heated in e and i. Bottom: The
orbital distribution at the end of the 157 Myr, by which time the cold
classical belt has been completely destroyed.
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still present at e < 0.1 (dark shaded green in the a — g panel) and a single particle
at i < 5° (shaded green in the a — i panel).

Even with such a ‘hand-picked’ rogue history where the planet’s presence at 30 <
a, < 100 au was intentionally avoided, a stable cold belt was not preserved. In other
words, it is extremely unlikely that a Earth-mass planet had been scattered out by
a Neptune with ay¢ =~ 30 au and traversed the primordial cold planetesimal belt
without overheating or even destroying it. This conclusion is in agreement with

numerical simulations carried out by Petit et al. (1999).

6.2.2 Rogues Scattered by Saturn

In the previous section, I have demonstrated that a Neptune-scattered Earth-scaled
planet normally has two fates. It either gets scattered inward and coupled with Sat-
urn/Jupiter, in which case its presence time at several hundred au is too short to
detach Sednoids, or it wandered outward under mainly Neptune’s gravity, for a du-
ration long enough that the cold classical belt would likely be overheated. In ad-
dition, Neptune’s interaction with this extra planet is also likely to heat up its own
eccentricity (Figure 6.12), and additional dynamical friction (such as Neptune mi-
grating through a planetesimal disk, see Section 4.3.2) is needed to account for its
current low eccentricity.

This prompts us to consider an alternative route for the rogue planet. If the
rogue cannot be scattered to large a by Neptune (and presumably not by Uranus
either because of the similar scattering timescale as Neptune, see Table 3.1), can
it first be scattered out by Saturn, and, when it reaches a of several hundred au,
be coupled only with Neptune/Uranus and thus have enough time (~100 Myr) to
produce Sednoids as we see today? This ‘perihelion transfer’ from a higher-mass
planet, which scatters more intensely, to a lower-mass planet is not often seen in
numerical simulations of test particles. Therefore, it is worth exploring whether a
rogue rapidly scattered out by Saturn and then coupled with Uranus/Neptune could
be produced through planet-planet interactions.

I thus created two sets of planetary simulations with four giant planets on their
current orbits and two 2Mg, rogues near Saturn. The goal is to see how often rogue-

rogue interactions could decouple one of the rogues from Saturn. The first simula-
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tion set (Sim-S-1) has the two planets on initially near-circular (e, o = 0) orbits with
aro = 14 au and 16 au (between Saturn and Uranus), while the second set (Sim-
S-2) has them on e,y = 0.1 orbits with a,y = 8 au and 9 au (one inside and one
outside the orbit of Saturn). Both set contains 360 independent simulations with
randomized rogue phase angles. They were integrated until the ejection of either
of the two rogue planets, and at the end of each simulation, orbital elements of the

remaining rogue were recorded.
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Figure 6.14: Final a, and ¢, of the remaining rogue planet when the other one
was ejected in two 2Mg rogue simulations (left panel for Sim-S-1 and
right panel for Sim-S-2). The rogues are color coded based on their final
qr» indicating the giant planet they coupled with at the end of the inte-
gration. The blue box represents a, > 200 au and g, > 15 au, which are
the potentially desireable parameters to begin the stage of Sednoids cre-
ation. For a few rogues that ended up in the blue region, time histories of
their orbits are also plotted with red or orange dots. The four horizontal
and vertical dashed lines mark the semimajor axes and perihelia of the
giant planets.

The median ejection times for the first of the two rogue planets are 2 Myr and
0.3 Myr for Sim-S-1 and Sim-S-2, respectively. Figure 6.14 displays the a, — g, lo-
cation of the remaining rogue planet when the other one was ejected (left panel for
Sim-S-1 and right panel for Sim-S-2). At the end of simulations, only 8/360 (2%)
and 1/360 (0.3%) rogues ended up in the a, > 200 au and g, > 15 au (blue box),

which I consider the desireable ‘starting’ region for a 2Mg planet to later produce
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Sednoids. Figure 6.14 also shows the a, — g, evolutional histories of those rogues
(dots in corresponding colors) that eventually made it to the blue box. It is clear
that for these planets, the a raising from the giant-planet region to 200 au is due to
Uranus and Neptune scatterings, as the rogue perihelia are not coupled with Saturn
(denoted by orange and red crosses with g, > 15 au) for most of the time. The
desireable detachment from Saturn or Jupiter scattering (denoted by gray crosses)
does not seem to occur at large semimajor axes. Visually speaking, there is no di-
rect path for the black and gray crosses to reach the blue region at a > 100 au in
Figure 6.14.

The planetary histories corresponding to the rightmost red cross in the left panel
of Figure 6.14 is plotted in Figure 6.15, while that corresponding to the rightmost
orange cross the right panel is plotted in Figure 6.16. As shown in Figure 6.15, the
rapid a growth (< 10 Myr) of Rogue 1 is not mainly induced by Saturn scattering but
(very rare) Neptune and Uranus scatterings, as several remarkable jumps in Rogue
I’s a, are all associated with sudden semimajor axis drops in Uranus (at ~1.1 Myr)
and Neptune (at ~1.9 Myr and ~2.3 Myr); these fast and large a, changes rarely
occur when the planet’s perihelion is above 15 au. Figure 6.16 demonstrates the
history of two rogues in one of the Sim-S-2 set. Both planets have their g, between
Uranus and Saturn for 8 Myr, until a Uranus scattering leads to a significant a jump
in Rogue 1 and a set of Saturn encounters boost Rogue 2 in the next ~3 Myr. Both
the jump and the beginning of Saturn coupling occur at the same time and it is
unclear if they are dynamically related. Again, the 8-Myr presence of Rogue 1 ata, ~
40 au would almost certainly overheat the cold classical belt beyond its observed
state (see Figure 6.8).

Both Figure 6.15 and Figure 6.16 demonstrate that the interaction of the two
Earth-mass planets does not create perihelion decoupling. The speculated sponta-
neous ‘perihelion transfer’ of the rogue planet from Saturn to Uranus/Neptune is
unlikely to occur at ~ 100 au semimajor axis, in models where the giant planets
are initially on their current orbits and not migrating. This is likely because the
volume of space is simply so large that rogue-rogue encounters are too unlikely.
Therefore, I conclude that the production of a large-a Saturn-decoupled planet is a
low-probability event in pure N-body planetary simulations.

However, two important factors that were not modeled in the simulation sets are
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Figure 6.15: Planetary evolution histories of the four giant planets and two
scattering rogue planets, initially placed at a, o = 14 and 16 au (Sim-S-
1). At the end of the simulation, the remaining planet (light blue, Rogue
1)’s end location corresponds to the rightmost red cross in Figure 6.14’s
left panel. Despite being started near Saturn, Rogue 1’s rapid a growth
is mostly related to scatterings at 15 < g, < 30 au, not associated with
Saturn’s gravity. Rogue 2 experienced chaotic movement between Sat-
urn and Neptune for 5 Myr until it coupled with Jupiter, leading to its
ejection.
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Figure 6.16: Same as Figure 6.15 but the two planets were initialized ata, o = 8
and 9 au (Sim-S-2). The remaining Rogue 1’s end location corresponds
to the rightmost orange cross in Figure 6.14’s right panel. At the end of
Rogue 2’s ejection, Rogue 1 reached a, > 200 au and g, ~20 au, but its
8-Myr presence at a, ~ 40 au would likely overexcite the cold classical
belt (see Figure 6.8).

the migration of giant planets and planetary instability. Due to gravitational inter-
actions with the gas disk, giant planets can rapidly migrate several au in timescale
of a million year (Goldreich & Tremaine, 1980; Lin & Papaloizou, 1986; Lissauer
& de-Pater, 2013; Armitage, 2020). Subsequently, scattering of an outer planetesi-
mal disk would also result in 5-10 au outward migration in Neptune and Uranus
semimajor axes, with a timescale between ~10 to ~100 Myr (e.g., Nesvorny, 2018).
Moreover, planetary instability models (for example, the ‘Nice model’ proposed by
Morbidelli et al., 2005; Tsiganis et al., 2005; Gomes et al., 2005a) have provided so-
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lutions for various puzzles, including the current location of giant planets, the Late
Heavy Bombardment (LHB), and small body orbital distributions in the inner So-
lar System. It is very unclear that how planetary instability and migration would
affect the production of the rogue planet, and investigating this topic would require
a deep understanding of the planet-gas disk interactions and a thorough numerical
exploration in the instability and migration. Therefore, I only present preliminary
planetary simulations, as further exploration is beyond the scope of my thesis. Nev-
ertheless, I speculate on a few scenarios that may have the potential to address the

timescale difficulty. They are:

1. The rogue got scattered out very quickly and subsequent inward migration of

giant planets led to Saturn decoupling.

2. The rogue got scattered out very quickly and subsequent interaction with the
gaseous protoplanetary disk (or the outer planetesimal disk) raised its perihe-
lion to near Uranus/Neptune. As far as 'm aware, the dynamical interaction
between a protoplanet disk with an early scattered large-a and large-e planet
(presumably with aphelion beyond the outer edge of the disk) is not studied

in literature °.

3. The rogue is a natural product of planetary-instability models when extra
Earth-mass cores are considered. In the original Nice model (Tsiganis et
al., 2005), Uranus and Neptune were initially formed within 18 au and got
scattered outward (mainly by Saturn), which further triggered subsequent
migration in the planetesimal disk. So far, only additional ice giant(s) have
been simulated in instability models (Thommes et al., 1999; Nesvorny, 2011;
Nesvorny & Morbidelli, 2012; Batygin et al., 2012). It is unclear whether
a Saturn-decoupled large-a planet can be produced in planetary-instability

models.

Hence, it would be worthwhile to investigate in future studies whether the rogue
planet is consistent with any of the above scenarios or any other plausible scenarios.

In the next section, I will shift my focus from the creation of the rogue onto the

8However, Kretke et al. (2012) investigated the dynamical evolutions of TNOs inside the protosolar
nebula to constrain its size.
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dynamical sculpting of the distant Kuiper Belt by this additional planet. Instead of
integrating test particles with a rogue history from its birth in the planet-formation
region to its ejection, I assume the rogue is already at large a, with g coupled to
Uranus or Neptune and generally scattered outward. This allows me to explore the
desireable rogue parameters at large-a, which can be used in planetary formation

simulations to further assess the probability of making such a planet.

6.3 GLISSER Simulations with a Rogue Planet

In Section 6.1, I established with analytically-computed constraints that the rogue
planet capable of making Sednoids would most probably be a super Earth coupled
with Uranus or Saturn (see Figure 6.8). However, these constraints were obtained
assuming the rogue has a fixed orbit, as opposed to a more realistic scenario where it
experiences planetary scatterings and random walks in semimajor axis. The dynam-
ical effect of a rogue with time-varying a, can be better understood through large-
scale numerical simulations, in which test particles feel gravitational pulls from both

the giant planets and the wandering rogue planet.

6.3.1 Reference Simulations

Before showing results from my rogue planet simulations, it is important to have in
mind what the four giants can already do. For example, in Chapter 5, I demonstrated
the rogue’s role in populating a = 50-100 au resonances and the detached TNOs by
comparing the reference simulation (with just the giant planets) and a rogue planet
simulation. Figure 5.1 only displays orbital distributions from 50 to 100 au. To help
the reader understand what the current Solar System can do to the larger-a region,
I illustrate the same reference simulation to a = 1500 au in Figure 6.17.

Test particles in the high-q region (defined as g > 38 au in this work) are high-
lighted in blue. Below a < 200 au, Kozai mechanisms inside neptunian mean-
motion resonances (Gomes et al., 2005b) play significant roles in lifting TNO peri-
helia, which is studied in Chapter 5. Beyond 200 au, neptunian resonances do not
seem to effectively detach TNOs from the scattering disk, and the 22 TNOs with
a > 200 au and g > 38 au (listed in Table 4.1 and marked with dark red crosses in

Figure 6.17) require an emplacement mechanism.
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Figure 6.17: Same a, q, i orbital distributions as in Figure 5.1 but replotted in
a larger a range. g < 38 au and g > 38 au particles are color coded in
black and blue, respectively. All detected g > 38 au TNOs are marked
by red crosses, whereas Neptune is marked by the orange cross. The
orange and blue dashed lines indicate ¢ = ay and g = 38 au, respec-
tively, and major neptunian n:1 and n:2 resonances are denoted by verti-
cal dashed lines. The three side panels show the a (top), g (upper right),
and i (lower right) histograms for a > 200 au particles, with blue and
gray lines corresponding to the low-g and high-q subsamples. The per-
centage represents the number of test particles in each bin as a fraction
of the total remaining particles. This simulation contains 50,000 initial
test particles.

It should be pointed out that the GLISSER simulation producing Figure 6.17 had
a synthetic early scattering disk with particles uniformly distributed in g from 33 to
38 au (for details of this simulation, see Chapter 5). This is a rather simplified model,
as I have shown in Chapter 3 that particles with higher initial perihelia would ex-
perience weaker Neptune scatterings. In addition, there are dynamical arguments
that Neptune probably migrated ~20 au to its current location at 30 au (Malho-
tra, 1993; Nesvorny, 2015a; Nesvorny et al., 2016; Nesvorny, 2018, 2021), and the
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early scattering disk was likely formed as a result of continuous gravitational scat-
terings in the outer planetesimal disk as Neptune’s orbit expanded. Consequently,
the synthetic scattering disk with presumed (though still reasonable) 4, g, and i dis-
tributions is no longer suitable if one attempts to explore the rogue-planet scenario
in the context of Neptune and Uranus migration. This is to say, to better capture the
constant-changing nature of an early scattering disk, one needs to perform a “pri-
mordial’ simulation with Neptune migrating through an initial near-circular and
co-planar planetesimal disk, with heliocentric distance <33 au.

With the additional REBOUNDX package (Tamayo et al., 2019), I can directly add
migration forces to a REBOUND simulation to induce exponential migration from an
initial @ to a final af (see Section 4.3 for details). The migration of Neptune ? can be
modeled as a two-stage eccentric migration with 73 = 30 Myr and 7, = 100 Myr;
this set of parameters is found to be better at recreating observed inclination profile
of implanted TNOs (Nesvorny, 2015a), and have been thoroughly investigated in
‘grainy migration’ models (Nesvorny & Vokrouhlicky, 2016; Nesvorny et al., 2016;
Kaib & Sheppard, 2016; Nesvorny, 2018). I note in passing that an early eccentric
stage of Neptune (with ey ~ 0.1) can better produce the low-e and low-i orbits at
50-60 au (Nesvorny, 2021).

Figure 6.18 shows a dynamical history of the four giant planets in a two-stage
eccentric migration model that I produced. Uranus and Neptune were started at
ay = 15.4auand ayo = 24 au, respectively. In the fast migration stage, Neptune
migrated with 71 = 30 Myr, until a sudden eccentricity boost at 15 Myr prolonged
the e-folding timescale to 7, = 100 Myr (Nesvorny & Morbidelli, 2012; Nesvorny
& Vokrouhlicky, 2016). Similar increments in Neptune’s eccentricity are often seen
in migration simulations when Uranus and Neptune cross their mutual 2:1 mean-
motion resonance ', Subsequent Neptune-planetesimal interaction in the disk can
further damp its eccentricity and inclination to current values. Nesvorny (2021)
pointed out that Neptune’s eccentricity boost can also be caused by the ejection of a
fifth ice giant.

The planetary history displayed in Figure 6.18 was input to GLISSER to demon-

°The planetesimal-driven migrations for Saturn and Jupiter are small enough (of order a tenth of
an au) to be disregarded in the modeling.
10Specially, among 200 independent simulations, 17% have ey > 0.05 and 5% have ey > 0.1.
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Figure 6.18: Dynamical history of the four giant planets in a two-stage ec-
centric migration simulation. Uranus and Neptune were initially at
ayp = 15.4 auand anp = 24 au, respectively. The migration e-folding
timescales are 71 = 30 Myr for the first 15 Myr and 7, = 100 Myr for the
rest of the simulation. The sudden growth in Neptune’s eccentricity (de-
noted by the vertical dashed line and probably caused by the mutual 2:1
resonance between Uranus and Neptune) is often seen in rogue planet
simulations.

strate the effect of Neptune’s migration on the small body population. The initial
planetesimal disk (that may have driven Neptune and Uranus migration) contains
50,000 massless particles uniformly distributed from ay = 24.5 to 33 au (for the
outer edge of the disk, see Section 4.3.2) with ey < 0.1 and iy < 5°. Another 2,000
particles (with 42 < gy < 47 au, ey < 0.01, and iy < 0.5°) representing the unex-
cited primordial cold belt are also included. The a, g, i orbital snapshot at 200 Myr
is plotted in Figure 6.19, with black dots denoting final locations of the main plan-
etesimal disk and orange dots the same for the initial cold belt.

This reference migration simulation is largely consistent with previous findings:
1) The cold classical belt was (as expected) heated by the sweeping of the 2:1 reso-

nance, with some cold classicals even removed from their birth region. Neverthe-
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Figure 6.19: a, g, i distributions at 200 Myr of the reference migration simula-
tion, corresponding to the planetary history shown in Figure 6.18. Black
and orange dots represent particles from the massive planetesimal disk
initialized inside 33 au and those from the cold classical belt, respec-
tively. This shows that Neptune’s migration (along with its resonances)
is capable of explaining some detached TNOs inside ~100 au, but does
not create any orbital detachment at @ > 200 au (similar to Figure 6.17’s
result).

less, nearly half (971/2000) of the cold-belt particles still remain unheated (defined
ase < 0.15and i < 5°) at the end of the simulation. 2) The slow migration of Nep-
tune can account for the observed ~15° inclination width in the implanted TNOs.
3) Some detached or high-q resonant objects are created within ~100 au through
the Kozai mechanism inside Neptune MMRs ''. 4) a > 200 au particles are not
found in g > 35 au. Simply put, the primordial migration simulation produces an

early scattering disk with g more closely attached to Neptune’s orbit, and detached

"In my reference migration simulation, the implantation efficiency for 50 < a < 100 au and
g > 34auTNOs is 84/50000 ~ 1.7 x 10>, close to the 2 x 10~ efficiency estimate in Nesvorny et al.
(2016). This level of implantation efficiency is probably needed to account for the number estimation
of detached objects in Beaudoin et al. (2023).
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objects are not made at several hundred au. Therefore, there is a compelling rea-
son to incorporate additional perturbers, such as the rogue planet, to explain the

observed distant Kuiper Belt.

6.3.2 Uranus-coupled Distant Rogue Planet

To begin with, I explore the possibility that the rogue planet (at large semimajor axis)
was dominantly coupled with Uranus as it scattered. The first planetary simulation
has migrating Uranus and Neptune, and a 1 Mg, rogue initialized at a, o = 100 au,
gro = 14 au, and i,o = 20° (Sim-U-Mig-1). The rogue was assumed to not ex-
perience planetesimal-driven migration; at ~100 au, the close encounter frequency
with planetesimals becomes so rare that it barely affects the rogue planet’s orbit.
The planetary history generated by this set of initial conditions '* is shown in Fig-
ure 6.20, and the corresponding GLISSER simulation (with 400,000 particles in a
planetesimal disk outside the initial orbit of Neptune from ay = 24-30 au) is plot-
ted in Figure 6.21.

This specific 1 Mg rogue spent the first ~60 Myr between a, = 100 au to 200 au
and the rest ~60 Myr at a, > 200 au before ejection at t ~ 120 Myr. The secular
effect during the first ~60-Myr presence is evident in Figure 6.21, where low-i de-
tached TNOs are abundantly created below a < 200 au, outnumbering the high-i
detached in the same orbital range. This is presumably not in agreement with the
real detached TNO detections from 75 < a < 150 au, most of which have i = 20°
despite the fact that low-i objects are easier to find when taking observational biases
into account. This implies that ~60 Myr presence of the rogue planet at a, < 200 au
would likely result in an orbital distribution that does not match the observed one,
and distant rogues started at even larger semimajor (a4, 2 200-400 au) seem more
desireable.

Furthermore, Figure 6.21 also demonstrates the difficulty of producing TNOs
with g > 60 au perihelia by this Uranus-coupled planet. The three Sednoids and the
two a > 1000 au high-q TNOs are not generated from this simulation, presumably

2Even when started at a, of 100 au, the rogue still has a reasonable chance to be scattered inward,
in which case the cold belt will likely be destroyed. Therefore, with the cold-classical constraint in
mind, I manually selected planetary histories of outward scattering rogues and only integrated those
cases with test particles.
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Figure 6.20: Planetary history of the first Uranus-coupled rogue planet simu-
lation (Sim-U-Mig-1). The test particle simulation related to this history
is shown in Figure 6.21.

due to the competing effect of Uranus and Neptune on the rogue’s secular dynamics.
Upon close inspection of the orbital evolutions of gy =~ 15 au rogues, I find almost
all of them have constant longitudes of perihelia o,. This would likely suppress its
g-lifting ability (see Equation 6.10) due to faster differential precessions between
TNOs and the rogue. However, the inclination distribution of the a > 200 au de-
tached TNOs seems in line with the known TNOs, and an i ~ 20° scattering planet
does not significantly alter the inclination structure of distant objects (compared to
the scattering disk in the same a range).

In light of the constraint of not overproducing the a = 75-200 au low-i de-
tached, I carried out another set of simulations (Sim-U-Mig-2) with a 2Mg, rogue

initialized at a, o = 400 au, g, = 15 au, and i,y = 25°. The exit condition of each
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Figure 6.21: Same as Figure 6.19, but for the a, g, i distributions at 150 Myr
of Sim-U-Mig-1, corresponding to the planetary history in Figure 6.20.
This simulation contains 400,000 initial test particles.

simulation is either 1) the rogue’s ejection at a = 1500 au, or 2) >5 Myr cumula-
tive presence time within a, < 200 au. 200 simulations were integrated, and the
median survival time of the rogue is merely ~20 Myr due to the larger a, . I plot
the history of the rogue with the longest survival time of 110 Myr (99% percentile)
in Figure 6.22, and the corresponding particle simulation in Figure 6.23. Note that
this GLISSER simulation only contains 50,000 particles, nearly an order of magni-
tude lower than the particle number in Figure 6.21. This decision was mainly made
for the trade-off between statistics and efficiency: A 50,000-particle GLISSER sim-
ulation normally finishes in a day, and a 500,000-particle simulation takes about
a week. Though with poorer statistics, a 50,000-particle simulation allows me to
‘take a peek’ at the general distribution related to a particular rogue history without
spending too much time and computing resources. If a simulation is deemed to be
promising, I then re-execute it with an order of magnitude more particles to get a

model with better statistics.
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Figure 6.22: Planetary history of the second Uranus-coupled rogue planet
simulation (Sim-U-Mig-2). The test particle simulation related to this
history is shown in Figure 6.23.

As shown in Figure 6.23, this rogue planet (though with a relatively longer pres-
ence time compared to other Uranus-couple planets in the same set) still has trou-
ble creating the g > 60 au Sednoids. Moreover, due to the rogue’s higher incli-
nation (25-35°), the inclination profile of large-a detached is more heated than in
Sim-U-Mig-2, with a small fraction reaching i > 50°. In the a < 200 au region,
nearly no detached particles are created, in major contrast to both the reference mi-
gration simulation (Figure 6.19) and Sim-U-Mig-1 (Figure 6.23). Statistically, the
50 < a < 100 au and g > 35 au implantation efficiency for this simulation is
~5 x 1074, four times lower than the ~2 x 1072 efficiency in the reference simu-

lation and the ~3 x 1072 efficiency in Sim-U-Mig-1. The reasons are as follows:

1. Compared to the planetary histories in the reference simulation and Sim-U-
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Figure 6.23: a, q, i distributions at 115 Myr of Sim-U-Mig-2, corresponding
to the planetary history in Figure 6.22. This simulation contains 50,000
initial test particles.

Mig-1, Sim-U-Mig-2 doesn't have a eccentric migration phase of Neptune
(Figure 6.22). A temporary eccentric phase is likely an important component
of Neptune migration, which helps populate the low-i detached objects within
a < 60 au (Nesvorny, 2021). As stated above, the rogue planet unlikely stayed
around a ~ 100 au for longer than 10 Myr, otherwise it would overproduce
low-i detached TNOs with 75 < a < 200 au (Figure 6.21) and potentially
heat the classical belt. Consequently, the rogue is probably not the cause for
a < 60 aulow-i detached TNOs, and the eccentric Neptune migration would
still be needed.

2. Chapter 5 demonstrated the rogue’s capability of helping populate the res-
onant and detached objects in 50 < a < 100 au. However, the synthetic
scattering disk used in Chapter 5 has a relatively wide initial g distribution
from 33 au to 37 au, and the rogue collaborates with neptunian resonances

more effectively if the early scattering disk already consists of objects with
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q ~ 35 au. Eccentric Neptune migration is able to satisfy this constraint.

3. Eccentric Neptune migration is a natural outcome of gravitational interac-
tions between Uranus and Neptune, and is compatible with the presence of
a third scattering planet. Both planetary simulations related to Figure 6.18
and Figure 6.20 have Neptune started at zero eccentricity, and the temporary
eccentric phases are directly caused by the gravitational interactions between

the three planets '°.

In addition to the two simulations shown in Figures 6.21 and 6.23, I also carried
out one more run with a different rogue history (2Mg, Uranus-coupled). The three
most distant Sednoids are still not created. Therefore, I conclude through numerical
simulations that Uranus-coupled (¢ ~ 15 au) Earth-mass planets have difficulty
sufficiently detaching TNOs from the scattering disk, presumably due to its fast-

changing semimajor axis and relatively short dynamical lifetime.

6.3.3 Neptune-coupled Distant Rogue Planet

Objects with g near 30 au generally survive longer than those with g near 15 au.
While in my analytical estimates, Neptune and Uranus on their current orbits should
have similar scattering timescales (see Table 3.1), in reality objects coupled with
Uranus also traverse Neptune’s orbit, shortening the timescale of scattering. In
(Duncan et al., 1987), the numerically-measured diffusion timescale for g ~ 15 au
is an order of magnitude shorter than that for g ~ 30 au, which explains why few
simulations in Sim-U-Mig-2 have rogues that survived >100 Myr.

I thus created two simulations to explore the general dynamics imposed by a
Neptune-scattered rogue planet. This first set of planetary simulations (Sim-N-Mig-
1) has a 2Mg, rogue initialized at a,o = 400 au, q,0 = 33 au, and i,y = 10°,
while the second simulation set (Sim-N-Mig-2) has a,o = 400 au, q,p = 32 au,
and irg = 15°. The exit condition is the same as in Sim-U-Mig-2. The median
rogue survival times are 160 Myr and 200 Myr for the two simulations, significantly

longer than Uranus-coupled rogues and in line with the analytical estimate. Two

13 Although Figure 6.18 only shows the history of the four giants, the corresponding planetary run
actually has a rogue planet interacting with Neptune (but not plotted or included in the test particle
simulation of Figure 6.19).
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Figure 6.24: Planetary history of the first Neptune-coupled rogue planet simu-
lation (Sim-N-Mig-1). The test particle simulation related to this history
is shown in Figure 6.25.

selected planetary histories (which are typical evolutions in both sets) are plotted in
Figures 6.24 and 6.26. They were further integrated along with 50,000 test particles
(shown in Figures 6.25 and 6.27) to understand the resultant dynamical sculpting
in the distant Kuiper Belt.

Figure 6.24 shows a rogue first wandering at a, ~ 400 au for 100 Myr, and
beyond 600 au for the rest of the simulation. Neptune’s eccentricity jumped to
ey ~ 0.07 at 25 Myr and was then damped to its current value due to dynami-
cal frictions in the planetesimal disk. The timescales of the eccentricity damping
and the inclination damping (though the latter is not as important) are set to be
the same as the e-folding time of the migration (Nesvorny, 2018). The history plot-

ted in Figure 6.26 demonstrates very similar evolutional behaviours, with the rogue
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Figure 6.25: a, q,i distributions at 170 Myr of Sim-N-Mig-1, corresponding
to the planetary history in Figure 6.24. This simulation contains 50,000
initial test particles.

hovering between 400 au to 100 au for near 200 Myr and Neptune having an early
eccentric state during its migration.

The TNO orbital distributions sculpted by the two rogues (with different dy-
namical histories) also look strikingly similar. Both Figure 6.25 and Figure 6.27
have a prominent detached population beyond ~200 au, covering all orbits of the
observed a > 200 au detached objects. In the 75 < a < 200 au region, few low-i de-
tached TNOs are created, due to the rogue’s non-presence inside 200 au. Although it
seems that the simulated distribution doesn’t have enough g > 38 au objects within
200 au, this is likely due to the small particle number (50,000) I used in these two
simulations. For a dynamical process that has the implantation effectively as low as
~2 x 107% (Nesvorny et al., 2016), at least an order of magnitude more particles are
needed to create a distribution that can be compared against detections.

Furthermore, both simulations demonstrate an inclination profile of distant ob-

jects in line with observations. The rogue-lifted TNOs largely preserve their incli-
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Figure 6.26: Planetary history of the second Neptune-coupled rogue planet
simulation (Sim-N-Mig-2). The test particle simulation related to this
history is shown in Figure 6.25.

nation structure (blue histograms in the lower right panel) as in the scattering disk
(gray histograms). However, Figure 6.23 shows that if the rogue’s average i exceeds
25°, more inclined TNOs will be produced at large semimajor axis, which will pre-
sumably violate the observational constraint.

To summarize, a Neptune-scattered distant planet, if started at ~ 400 au and
i < 25° is very promising at creating all the discovered large-a detached TNOs,
while not overproducing low-i detached TNOs at a ~ 100 au. Alternatively stated,
this situation would mean a rogue that gets to large a quickly. The same simulation
shown in Figure 6.27 will thus be reintegrated with a larger number particles, in

order to be compared against observations.
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Figure 6.27: a, q,i distributions at 200 Myr of Sim-N-Mig-2, corresponding
to the planetary history in Figure 6.26. This simulation contains 50,000
initial test particles.

6.4 The Rogue Planet Model

The most promising distant TNO orbital distribution (Figure 6.27) from my prelim-
inary experiments in Section 6.3 is produced by the Neptune-scattered rogue planet
shown in Figure 6.26. To further study this distribution with better statistics and
compare it against observations, I re-performed the GLISSER simulation with the
same planetary history and 500,000 (an order of magnitude more) particles rep-
resenting the massive planetesimal disk (25.5 < a < 33 au). I also added 2,000
near-circular and co-planar particles initialized in the cold belt (42 < a < 47 au).
The test particle simulation was first integrated to 180 Myr (similar to the one in
Figure 6.27) with the presence of the additional planet, and further eroded to 4 Gyr
to obtain a present-day distribution.

At the end of the 4 Gyr simulation, 10,561/500,000 (2%) of the outer-disk par-
ticles and 1,139/2,000 (57%) of the initially cold-belt particles remain in the Solar

System. I carried out another 10-Myr long integration for all the remaining ones to
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Figure 6.28: a, g, i distributions sculpted by the rogue planet in Figure 6.24 for
~200 Myr and further eroded to 4 Gyr. Particles are color-coded based
on their dynamical classes at the end of the integration, with blue repre-
senting the detached, green the scattering, pink the resonant, dark blue
the hot classicals, black the hot classicals. The three side panels show
corresponding histograms for a > 200 au scattering (green) and de-
tached (blue) particles. The a > 200 au high-g TNOs are denoted by
red crosses. See Table 6.1 for the implantation fractions for each popu-

lation.

categorize them based on their dynamical classes (see Section 1.3.1 and Gladman

et al. 2008; Gladman & Volk 2021). The final snapshot of the all surviving particles,

color-coded according to their dynamical classes, is plotted in Figure 6.28. I also

classicals, as well as the retention fraction for cold classicals, in Table 6.1. In the last

record the implantation efficiency for the detached, resonant, scattering, and hot

three rows of this table, I give the ratios of the detached to other hot populations in

three different semimajor axis ranges. These rates and ratios will be used to judge

the credibility of the rogue planet model based on metrics introduced in Section 4.6.

The rogue planet model creates a detached orbital distribution (blue dots) that
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Table 6.1: Implantation (or retention) fractions for each TNO population in
the rogue planet model (Figure 6.28) and their relative ratios

a <48au 48 <a<200au a>200au Total
Detached — 1.6 x 1073 1.2x1072  13x1072
Resonant 3.6 x 1073 1 x 1073 — 4.6 x 1072
Scattering 2.6 X 107 33x 1074 1x 1073 1.3 x 1073
Hot Classicals 1.8 x 1073 — — 1.8 x 10~
Cold Classicals 0.55 2 x 1072 5x 107% 0.57
Det / Res — 1.6 — 2.8
Det / Sca — 4.8 12 10
Det / Hot (0.9) - - 7.2

Note. Implantation fractions (the number of particles that ended up in each pop-
ulation divided by the total number of initial particles) for each implanted popula-
tion (detached, resonant, scattering, and hot classicals), and the retention fraction
for cold classicals. The last three rows show the ratios of detached/resonant, de-
tached/scattering, and detached/hot classicals at each a range. Note that the first
Det/Hot ratio is actually the ratio of 48 < a < 200 au detached to the hot classicals.
See text below for more discussion.

better clarity, real objects with a < 200 au are not plotted in Figure 6.28, but the
reader can find them in Figure 6.17). Because different dynamical mechanisms con-
tributed to their formation, I will further divide detached TNOs into two subgroups:
those with a = 48-200 au and those beyond a > 200 au.

6.4.1 Detached Objects with a = 48-200 au

In 48 < a < 100 au, TNOs are mainly detached by Neptune migration and res-
onances. The rogue planet acts as an assisting perturber in the process, helping
replenish resonances from the early scattering disk and kicking TNOs out of the res-
onance at high-q (see Chapter 5). Most of the detached TNOs formed in this region
concentrate on a band of 34 < g < 38 au, whereas the high-g ones (g > 38 au) are
more likely to be discovered on the sunward side of strong neptunian resonances.
This distribution looks strikingly similar to those produced by grainy migration
models (e.g., Nesvorny et al., 2016; Kaib & Sheppard, 2016). However, I didn’t
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manually model the graininess of Neptune’s migration as a result of scattering of
Pluto-mass planetesimals, as in Nesvorny et al. (2016). The rogue planet by itself
is a natural cause for the grainy migration, as the rogue-Neptune mutual interac-
tion naturally jiggle Neptune’s orbit. In addition, the rogue’s weak encounters in
the scattering disk can also be treated as adding graininess to TNO orbits.

One evident difference between the distributions in Figure 5.2 (in which Nep-
tune’s orbit is fixed) and in Figure 6.28 (in which Neptune migrates) is that when the
rogue acts as the only perturbation, detached TNOs drop out symmetrically around
neptunian resonances at high-q, forming fountain-like structures in the a — g space.
This does not reflect the a — g distribution of detected high-q TNOs, because they
are mostly concentrated at the sunward side (i.e. a < daye) of neptunian n:1 or n:2
resonances (Lawler et al., 2019; Bernardinelli et al., 2022). The only known way
of creating this asymmetry is through outward Neptune migration (Nesvorny et
al., 2016; Kaib & Sheppard, 2016). In scenarios where both the migration and the
rogue planet are considered, the asymmetry can also be produced if the duration of
the rogue’s presence is not significantly longer than the time for Neptune to reach
its current location. This is because even the rogue detaches TNOs symmetrically,
subsequent resonance sweeping can still pickup the a > a,; TNOs when the reso-
nance slowly moves outward. Furthermore, as the rogue planet wanders outward,
its TNO encounter rate drops as a, 3/2 (Equation B.7); an a, = 800 au rogue would
only have one third of an a, = 400 au rogue’s encounter rate. The rogue planet’s
extreme large-a presence normally occurs near the end of its ~200 Myr lifetime, at
which point Neptune had basically migrated to its current location (see Figure 6.26).
This could explain why the 48 < a < 100 au high-q detached are still preferentially
distributed on the resonance sunward sides (Figure 6.28), despite the ~200-Myr
presence of the rogue.

In 100 < a < 200 au, the detached TNO’s concentration around resonances is
not evident. Nevertheless, the more heated i distribution (compared to the green
scattering TNOs) suggests that the g lifting is still mainly induced by the resonance-
related Kozai mechanism (Gomes et al., 2005b). The rogue planet also likely con-
tributed to the q lifting, but the apparent lack of low-i detached objects in this re-
gion (which is purposely designed by choosing a rogue history that is absent in

100 < a < 200 au, in order to satisfy the observational constraint) shows that it is
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not the main factor. In addition, this rogue planet model also creates non-negligible
populations of distant resonances beyond a > 100 au, which will be further dis-

cussed in Section 6.4.2.
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Figure 6.29: a, q, i distributions of the intrinsic detached based on the rogue
planet model (gray dots), the simulated detections using the OSSOS sur-
vey simulator (red crosses), and the real detached objects discovered by
OSSOS (black triangles). The superimposed simulated detections are of
the same size as the OSSOS sample (52 objects), whereas the cumulative
distributions are plotted with a larger sample size. Other information is
the same as Figure 5.4.

Similar to what I have done in Section 5.4, I also estimated the observation bias
by forward-biasing the 48 < a < 200 au detached population using the OSSOS sur-
vey simulator (Lawler et al., 2018b). The orbital distributions of the intrinsic model
(gray dots), the simulated detections (red crosses), and all the OSSOS-discovered
detached (black triangles) in this a range are plotted in Figure 6.29. The three side

panels show the cumulative histograms for the a (top), g (upper right), and i (low
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right) distributions '*. Note that this figure is intended to provide a comparison of
general trends in distribution, not a statistical comparison.

On Figure 6.29s a and i panels, the cumulative fractions of the simulation de-
tections (red) have very similar trends with the real OSSOS detections (black), even
if the intrinsic a and i distributions are quite different. One can see that a TNO
survey like OSSOS would preferentially detect objects at lower a, g, and i. In terms
of the g distribution, this rogue planet history results in fractionally more objects at
lower g and less objects at higher g, although the g ~ 38 au ‘knee’ can be spotted
in both the simulated and real distributions. These distributions are both sensitive
to Neptune’s migration history and the rogue planet history. For example, the e-
folding timescale, the graininess (Nesvorny et al., 2016), as well as the presumed
eccentric migration of Neptune (Nesvorny, 2021) should all collectively affect the g
distribution of the implanted detached TNOs in Figure 6.28. I also uncovered the
previously-unknown role of the rogue planet in helping populate this region (see
Chapter 5.3), bringing broader perspective of how to model ‘graininess’ in Neptune
migration.

From Table 6.1, the implantation efficiency for the detached TNOs in 48 <
a < 200 auis 1.6 x 107>, When limited to 50 < a < 100 au (the same range
used in Nesvorny et al. 2016), the efficiency is 1.1 x 1073, roughly a factor of two
lower than Nesvorny et al. (2016)’s grainy migration simulation. When using the
slightly wider range of 48 < a < 250 au used by Beaudoin et al. (2023), the im-
plantation efficiency is 1.8 x 1072, By de-biasing a parametric detached population
model and my preliminary rogue planet model in Chapter 5 with the OSSOS sur-
vey simulator (Lawler et al., 2018b), Beaudoin et al. (2023) proposed an estimate
of N(H, < 8.66) = (54 2) x 10* detached objects in 48 < a < 250 au with
95% confidence. Using the ~7 x 10~/ Trojan capture efficiency (Nesvorny et al.,
2013) and the fact that there are 13 Jupiter Trojans with H, < 8.66, one can estimate
the origin planetesimal disk should have contained ~2 x 107 bodies with diameter

D > 100 km'* (Nesvorny et al., 2016). Based on this, this rogue planet model pro-

"Only particles and simulated detections with g > 34 au are shown in Figure 6.29, because the
detached TNOs discovered by OSSOS start from g = 34 au.

“H, < 8.66 magnitude corresponds to D > 100 km assuming a 4% albedo. This ~2 x 107 gets
used a bit later.
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vides ~36,000 objects with H, < 8.66 in the 48 < a < 250 au detached population,
consistent with Beaudoin et al. (2023)’s population estimate calibrated against the
OSSOS survey (Bannister et al., 2018).

6.4.2 Other Implanted Populations within a < 200 au

When compared against other distant resonances (which is one of the metrics in
Section 4.6), the 48 < a < 200 au detached population outnumbers the distant
resonant population by a ratio of ~1.6 (Table 6.1). Recently, Crompvoets et al.
(2022) estimated the distant resonances beyond 2:1 should contain 110, OOOJ_rgg?O’ggO
objects with H, < 8.66 in total, resulting in a fairly uncertain observed det/res ra-
tio of order unity. The rogue planet model is therefore consistent with the distant
resonance estimate, but favors an a < 200 au detached population larger than dis-
tant resonances combined. It is worth mentioning that rogue planet models are the
only known models bringing the ratio within the observational constraint (includ-
ing the preliminary model studied in Chapter 5.4, which gives a det/res ratio of 2.3).
Two grainy migration models in (Nesvorny et al., 2016) give 8 or 11 for the ratio of
50 < a < 100 au detached to the total n:1 resonance population in that range. It
is also worth highlighting that this rogue planet also creates non-negligible popu-
lations in distant resonances beyond a > 100 au, including the 8:1 (Bernardinelli
etal., 2022) and 9:1 (Volk et al., 2018). This apparent improvement compared to just
grainy migration models can be explained by the rogue’s assisting effect of populat-
ing distant resonances regardless of their semimajor axis (Chapter 5). In contrast,
resonant capture during neptune migration preferentially favors captures into close-
in resonances like the 3:2, whereas distant resonances are weaker or faster moving
(illustrated in Figure 4.3), resulting in less efficient population.

Turning to the present-day scattering sub-population, the detached/scattering
ratio for this simulation in the 48 < a < 200 au range is ~5. This is larger than the
ratio of 1.5 &= 0.7 obtained by combining Lawler et al. (2018a)’s scattering estimate
with Beaudoin et al. (2023)’s detached estimate. If one uses the earlier Petit et al.
(2011)’s estimate of ~5, OOOfgzggg scattering disk objects with H, < 8.66, the ratio
would be 10 with a factor of 2 uncertainty, consistent with the 5 resulted from this

rogue planet simulation. The det/sca ratio of ~4 in Nesvorny et al. (2016) is the
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closest.

The final component of the implanted population is the hot classicals, which
were essentially formed in the same way (dropouts from the sweeping 2:1 resonance)
and period of time as the a < 200 au detached. They were historically labeled as a
different dynamical group because they coincidentally overlap with the cold classical
belt. Using the 1.8 x 10~ implantation efficiency for hot classicals (Table 6.1) and
the same 2 x 107 for disk TNOs, I obtain 36,000 objects with H, < 8.66. This is
in agreement with Petit et al. (2011)’s hot belt estimate of 35,000755% D > 100 km
objects. The a < 200 au detached population thus has a comparable size with the
entire hot classical belt.

The only obvious inconsistency of Figure 6.28 with the observed Kuiper Belt that
this rogue history produces is an overpopulated 3:2 resonance. The 3:2 implantation
frequencyis 3 x 10~ in my model, resulting in a population of 60,000 H, < 8.66 ob-
jects. This is not compatible with the population estimates of 13, 0005000 in Glad-
man et al. (2012) and 10, 000'3888 in Volk et al. (2016). Nesvorny (2015a) pointed
this out as the resonance overpopulation problem '°, which was also noted in many
previous dynamical studies on Kuiper Belt formation (e.g., Hahn & Malhotra, 2005;
Levison et al., 2008). Nesvorny & Vokrouhlicky (2016) studied the capture into the
3:2 in a variety of smooth and grainy migration models, where their table 1 shows
the current 3:2 population is highly sensitive to migration details. Again, it is within
my expectation that implanted populations closer to Neptune is more sensitive to
the migration than the rogue planet history.

As mentioned at the beginning of Chapter 3, CFEPS found the entirety of the
implanted population from 40 au to 100 au can be fit with a continuous dN/da
a—%5 power law (Petit et al., 2011, their figure 8). Beaudoin et al. (2023) measured
the a distribution of the detached sample from the OSSOS survey, concluding it fol-
lows a2 all the way to at least ~200 au. I have demonstrated in Chapter 3 that a
semimajor axis power law naturally results from the scattering dynamics. Though

1.5 a transient a2 distribu-

the long-term steady state of a scattering disk is a™
tion does temporarily appear in numerical experiments prior to the scattering disk
reaching the steady state (Figure 3.12). It is therefore worth investigating the a dis-

tribution of the implanted population from the rogue planet model. Apparently,

'In contrast to the underpopulation of resonances with a > 50 au.

191



the a > 200 au detached population does not follow any power law due to the sec-

ular sculpting from the rogue planet (see Figure 6.28 and the next subsection). I

thus plot the a histogram of the implanted population (resonant + detached) from

40 au to 200 au in Figure 6.30. The 3:2 resonance at ~39 au is not included due to

overpopulation.
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Figure 6.30: a histogram of the implanted population from 40 au to 200 au
(excluded scattering and the 3:2 resonance in Figure 6.28’s case). Three
dashed lines denote reference power laws with a®, where « is -1.5
(black), -2.5 (red), and -3.5 (gray), respectively. This plot demonstrates
that the a distribution of the implanted population is close to a contin-
uous a2 power law.

Figure 6.30 shows that the rogue planet model also results in a roughly a =2

5

power law'” in the 40 < a < 200 au implanted Kuiper Belt, explaining why in Fig-

ure 6.29, the real detached match the simulated detections so well in the g histogram.

The fact that this distribution is steeper than the steady state of the scattering disk

may put new constraints on Neptune’s migration timescale, as well the dynamical

history of the rogue planet:

1. Numerical experiments confirm that a a3 temporary state can be reached

171 fit this distribution with the functional form of a and confirm the best fit is « = —2.87.
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at ~60 Myr, and a=2> can be reached at ~150 Myr (see Figure 3.12), as-
suming initial particles have 7 =~ 3 corresponding to a near-circular and
co-planar planetesimal disk just outside the migrating Neptune. The dynam-
ical implantation within 200 au is mainly caused by the sweeping of neptu-
nian resonances in the scattering disk (though rogue encounters helped in
the process, it's not the main factor). Therefore, the implantation efficiency
across different semimajor axes is highly dependent on the underlying scat-
tering distribution. I assess, to achieve the observed a~2-° distribution, Nep-
tune migration probably had not ended in <50 Myr after Neptune started
interacting with the planetesimal disk. A steeper power law would otherwise

be observed assuming a faster Neptune migration.

. The rogue planets secular g effect, which scales as a*>

according to Equa-
tion (6.24) assuming a < ay, is naturally incompatible with a decaying power
law in a. It is also shown in Figure 6.28 that the detached distribution be-
yond a > 200 au does not follow a power law distribution, due to the rogue’s
>100 Myr presence beyond a, ~ 400 au. Therefore, as more large-a objects to
be discovered by future surveys like LSST (Collaboration et al., 2021), it will
also likely reveal where the a=2*> distribution of the implanted population
ends (presumably near ~200 au as the innermost Sednoid, 2012 VPy;3, is at
a ~ 250 au). This will provide a valuable constraint to the rogue’s dynamical

history.

In a short summary, up to a = 200 au, the rogue planet model presented in Fig-

ure 6.28 and Table 6.1 is largely in agreement with observational constrains from

various dynamical groups, with the only exception being an overpopulated 3:2 res-

onance. The observed a—2-> power law in the implanted population can be repro-

duced in the rogue planet model, and the semimajor axis distribution of the im-

planted Kuiper Belt is a key to constrain both the migration timescale of Neptune

and the dynamical history of the rogue.

6.4.3 Detached Objects with a > 200 au, the ‘Iceberg’ Population

In these rogue planet models, the orbital distribution beyond 200 au looks com-

pletely different from that below 200 au. As shown in Figure 6.28’s side panels, the
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rogue-raised large-a TNOs have a peak near a ~ 400 au. Because the g-lifting rate
for distant TNOs is the fastest near a = a, (Equation 6.21), it makes sense that the
semimajor axis where most of the detached objects formed is close to where the
planet had spent most of its time (400 < a, < 600 au, see Figure 6.26).

The detached TNOs also cover a wide range of g, from ~40 au all the way to
~200 au, with a peak near ¢ = 50 au. Compared to distribution right after the
removal of the rogue planet (Figure 6.27), the ¢ < 50 au objects (including the
enormous scattering population initially created by the rogue, see Figure 6.27) had
experienced significant dynamical erosion over the age of the Solar System, due
to chaotic diffusion induced by overlapping neptunian resonances in the distant
Kuiper Belt (Batygin et al., 2021, and priviate communications with Sam Hadden
(2023)). There is thus no practical need to check whether an a > 200 au TNO is
in any resonance with Neptune, because 1) neptunian resonances at this distance
cannot help lift perihelion and are irrelevant to the formation of the detached ob-
jects (see reference simulations in Figures 6.17 and 6.19), and 2) resonant states are
chaotic in the scattering disk because of the overlap. This is not to say, however, that
none of the TNOs from this gigantic population are in resonance with Neptune. In
fact, Volk & Malhotra (2022) explored the phase-space structures of resonances for
a > 150 au and g > 38 au TNOs, where they found that almost all distant TNOs
are very close to (or even inside of ) high-order neptunian resonances. Nevertheless,
distant resonances beyond a > 200 au have never been shown to help detach TNOs
from the scattering disk. They are thus not considered in my dynamical classifica-
tion algorithm.

For the sake of simplicity, I designate the entire 200 < a < 1500 au range of
TNOs (including both the detached and scattering) as the iceberg population be-
cause 1) they are presumably made of icy bodies, 2) they were all likely formed as
a result of the synergy of Neptune scattering and the rogue’s secular forcing, and 3)
their triangular shape in the a — g plot resembles an iceberg (see Figure 6.31 for its
tull range). I did not adopt the commonly-used term of Inner Oort Cloud objects,
because there is no model (that matches orbital distributions in a, ¢, and 7 and is
compared against observations) showing that they were formed from galactic tides
or stellar flybys (see Section 4.4), nor are a < 1500 au objects dominated by the

current galactic tides.
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The observation bias against detection of iceberg objects is huge, and the cur-
rently discovered residents were resulted from various surveys over the course of
the last two decades. For example, Sedna was resulted from an all-sky survey based
on the Palomar Observatory in California, which was designed to discover the rare
bright (large) objects in the Kuiper Belt (Brown et al., 2004). 2012 VP ;3 was discov-
ered using the Dark Energy Camera (DECam) at the Cerro Tololo Inter-American
Observatory in northern Chile (Trujillo & Sheppard, 2014). The entire OSSOS sur-
vey (whose fields mainly follow the invariable plane, Bannister et al. 2018) only dis-
covered one a > 200 au detached TNOs - 505478 (2013 UT}5) — while the Dark
Energy Survey (DES, whose larger sky coverage preferentially looked at the high-
latitude southern sky, Bernardinelli et al. 2022) added three more distant detached
objects — 2013 RA g9, 2014 WBs56, and 2016 SAsg — to the detected sample (see
Table 4.1).

These and the other surveys which provided the a > 200 au sample had different
pointing strategies and magnitude limits, making it extremely difficult to estimate
the observation bias for each iceberg object. Therefore, instead of forward biasing
the intrinsic model and comparing the resultant distribution with only the OSSOS
sample (which is impossible because there is only one detection), I simply assume all
iceberg TNOs share the same detection bias as the OSSOS survey. The comparison
result is shown in Figure 6.31. It is worth noting that this is far from a rigorous
comparison, but rather a rough estimate of the bias with limited tools.

Roughly, the observationally biased simulated detections (red curves and crossed)
in Figure 6.31 show the same trends as the g, ¢, and i distributions of the 22 real dis-
coveries. Compared to the real TNOs (black curves and triangles), the synthetic
detections have a smaller fraction of the objects at larger semimajor axis, implying
this rogue planet in Figure 6.26 underpopulated the a > 500 au region. Perhaps
all that is needed is the rogue spend more time near a ~ 1000 au. Alternatively,
this could be explained by unmodeled effects that could have helped populate the
extremely large semimajor axes, including galactic tides and passing stars. Though
close-in passing stars are not thought to fully account for the formation of the Sed-
noids (because of the excited inclination distribution it would have produced, see
Section 4.4), the cumulative effects of galactic tides and normal passing stars in

4 Gyr can still help lift the perihelia of some extremely large-a TNOs (see figure 9 in
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Figure 6.31: a, q,i distributions of the intrinsic ‘iceberg’ population (gray
dots), the simulated detections using the OSSOS survey simulator (red
crosses), and the currently-detected TNOs in this region (black trian-
gles). The superimposed simulated detections are of the same size as the
discovered TNOs (22 objects), whereas the cumulative distributions are
plotted with a larger sample size. Note that this is not a rigorous com-
parison but a preliminary estimate of the observation bias.

Kaib & Volk 2022). Moreover, my planetary simulation removes the rogue planet

once it reaches a = 1500 au, which limited the duration of its presence at very large

semimajor axis. Therefore, future rogue planet simulations should fully account for

the effects of galactic tides and passing stars, as well as the rogue planet’s behaviour

under these effects while at thousands of au.

Surprisingly, the inclination profile of real TNOs (black curve in lowest right

panel of Figure 6.31) look almost identical to the intrinsic model (gray curves),

whereas the simulated distribution contains a greater fraction of low-i orbits. This is

not concerning, as the survey simulator was built upon ecliptic surveys like CFEPS

and OSSOS and thus the simulator greatly favors low-i detections. In fact, these
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a > 200 au TNOs were discovered by a variety of surveys, including high-latitude
surveys like the DES and all-sky surveys that revealed Sedna, and thus the real de-
tection bias against large-i orbits is certainly weaker than what the OSSOS simulator
predicts. Therefore, I argue that the intrinsic inclination distribution given by the
rogue planet model may be close to the real profile, and the lack of large-i orbits
in the iceberg strongly favors a moderately-inclined (~15°) rogue planet scenario
over other explanations that would result in a heated i. The latter includes theories
like Planet 9 (Batygin & Brown, 2016b; Batygin et al., 2019), and the hypothesis
that Sedna was formed by stellar encounters when the Sun was in its birth cluster
(Morbidelli & Levison, 2004; Kenyon & Bromley, 2004; Brasser & Schwamb, 2014).

The intrinsic g distribution of the iceberg is close to a uniform distribution from
~40 au to ~120 au, but both the simulated detections and the real TNOs greatly fa-
vor low-gq because of the strong observation bias against discovering high-q orbits.
Although the biased match of the g distribution is pleasing, a detail is that the sim-
ulated distribution (containing 169 samples) does not have a strong knee shape at
q ~ 50 au as the real one. It is unclear whether this feature is caused by an un-
derlying inhomogeneous g distribution or small-number statistics. Related to this,
Trujillo & Sheppard (2014) and Kavelaars et al. (2020) pointed out for the range
150 < a < 1000 au, no objects have been discovered between 50 < g < 75 au. Al-
though the recently-discovered 2021 RRyg5 at a = 990 au and g = 55 au (Table 4.1)
will further limit this range down to 55 < g < 75 au, this so-called ‘q gap’ in the
large-a population piqued questions about its interpretation: is it just a statistical
fluke or does it imply some unknown dynamical formation mechanisms? So far,
no published dynamical models (including the rogue planet model I present in this
thesis) can create a complete g gap in the intrinsic distribution.

Because the g gap’s presence is questionable, I'm interested in whether some
sort of q gap also appears in my simulated detections of the same sample size. My
simulated detections contain 169 objects (which apparently have no gap in the g
distribution, see the upper right panel in Figure 6.31) and I experiment by randomly
drawing 22 simulated detections from this sample. I then measure the maximum
‘q gap’ within a = 1000 au for each experiment. Among 20 experiments I ran,
12/20 (60%) experiments have a g gap >10 au, and 4/20 (20%) have a g gap >20 au.

One example of the randomly-generated g gap is demonstrated in Figure 6.31 with
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red crosses. This shows that a ‘q gap’ can be easily created by sparsely sampling an
underlying uniform distribution in g, and the one currently observed in the large-a
Kuiper Belt is plausibly just a statistical fluke. Moreover, if the g gap proves to be
real, my preliminary rogue-planet simulation in Figure 1.8 shows an asymmetry in
the a — ¢q distribution, exhibiting a non-uniform density at a ~ 200 au. This is
perhaps a mechanism to create a ‘q depression’ if it really exists.

Using the implantation efficiency in Table 6.1 and the estimate that there were
initially ~2 x 107 D > 100 km object in the outer planetesimal disk, one obtains an
a > 200 au population of ~250,000 objects with H, < 8.66. Assuming the initial
planetesimal disk has Mg;x >~ 20Mg, (Nesvorny, 2018), the iceberg should currently
contain ~0.25Mg, of material. Given there are only 22 discovered iceberg TNOs
with the dimmest being 2015 GT5¢ with the H magnitude of 8.5, I estimate only
~0.01% of the population have been discovered so far, truly the ‘tip of the iceberg’
The iceberg population thus represents the largest component of the Kuiper Belt
and future surveys like LSST (Collaboration et al., 2021) should help find more of
its residents.

Last but not least, given the existence of Pluto in the resonant population and
Eris in the a < 200 au detached population, Table 6.1 implies that ~5 Pluto-sized
objects should currently reside in the iceberg. Given the ~1.2 x 10~2 implantation
efficiency of the iceberg, the largest body in the iceberg would be at the scale where
there were ~100 bodies in the massive planetesimal disk, which would be between

Pluto and Mars scale depending on how steep the H magnitude distribution is.

6.4.4 Stability of the Cold Classical Belt

The non-excitation of the cold classical belt is used in Sections 6.1 and 6.2 to con-
strain the early evolution of the rogue planet and the duration of its presence at
several hundred au. Figure 6.8 demonstrates that for a 2Mg rogue to overheat the
cold classical belt, it needs to resides at 400 au for 22500 Myr or at 500 au for 21 Gyr.
This is much longer than typical lifetimes of rogue planets. Consequently, the cold
classical belt is unlikely to be overheated by the rogue planet.

In addition to 500,000 outer-disk particles, the rogue planet model in Figure 6.28
also contained 2,000 initial cold belt particles from a = 42 to 47 au. The final orbital
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distributions of the surviving ~1,100 particles are plotted in Figure 6.32.

Time: 4 Gyr

q (au)
5

30K Neptune T ST

20'*‘

| (deg)

55 60

Figure 6.32: The preservation of an underheated cold classical belt in the rogue
planet model. Other information is the same as Figure 6.13.

The clearing of a < 42.5 au particles is mainly due to the v secular resonance
(see Figure 2.3). The biggest disturber of the cold belt, however, is not the rogue
planet but the outward-sweeping 2:1 resonance during Neptune migration, which
starts at ~38 au assuming ay,o = 24 au. The 2:1 resonance is able to heat the cold
belt, keeping most e < 0.1 (with e ~ 0.15 for some beyond 45 au), while keeping
their inclinations mostly untouched. This is consistent with previous simulations by
Hahn & Malhotra (2005), in which they show in their figure 2 that the 2:1 resonance
is ineffective at heating cold classicals inclinations. Even though the cold belt was
initialized within 47 au, there are still a reasonable number of particles ending up
with a > 47 au, due to resonant sweeping. At4 Gyr, the retention fraction of the cold
belt is 55% (Table 6.1), with 8% eventually being captured into the 2:1 resonance.

Figure 6.32 corroborates that neither encounters (estimated in Figure 6.1) nor

the secular effect (estimated in Figure 6.8) from this particular rogue planet has
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visible effects on the cold classical belt. Rogue planet models are thus compatible
with the stability of the cold belt.

6.4.5 Orbital Clustering
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Figure 6.33: Distributions of w and (2 at 4 Gyr for iceberg TNOs. The top
panel shows that g < 100 au TNOs are randomized in phase angles,
whereas g > 120 au TNOs in the bottom panel display a o concentra-
tion near —90°. The longitude they cluster at does not matter, as that
depends on the initial apsidal line of the rogue planet, a random param-
eter in numerical simulations. This plot shows that g > 120 TNOs (if
they truly exist) should still possess the primordial apsidal clustering, as
their precession periods P, are generally longer than the age of the Solar
System (see Figure 6.2).

Claims of so-called ‘clustering’ of orbital angles in a > 200 au TNOs have been
used to advocate for a still-existing planet in the outer Solar System (Trujillo & Shep-
pard, 2014; Batygin & Brown, 2016a; Batygin et al., 2019). The credibility of the
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intrinsic clustering is called into doubt by well-characterized surveys (Shankman et
al., 2017; Bernardinelli et al., 2022). Napier et al. (2021) shows that the joint detec-
tion probability of the 14 distant TNOs discovered by OSSOS, DES, and Sheppard
& Trujillo (2016) is consistent with an intrinsically uniform distribution. There is
thus no need for a currently resident planet.

While present, the rogue planet induces similar TNO dynamics as the hypothet-
ical Planet Nine. The perihelion lifting of distant TNOs is closely related to their ap-
sidal directions with respect to the planet (i.e. the angle Aw in Equation 6.20). As
a result, all of the secularly-raised iceberg TNOs should have similar range of Aw
when they were first formed. In addition, because the rogue planet is not rapidly
precessing,'® @ > 200 au high-q TNOs should have displayed orbital clustering
when they were initially detached from the scattering disk.

Subsequent apsidal precessions caused by the giant planets, however, would es-
sentially randomize their phase angles, given that TNOs on different orbits have
unequal precession rates. As shown in Figure 6.2, the apsidal precession periods
P, for a > 200 au and g < 80 au orbits vary from several hundred million years
to longer than the age of the Solar System, one might thus expect that a primor-
dial orbital clustering in @ would be fully randomized at ~4 Gyr. The top panel in
Figure 6.33 demonstrates the final distributions of angles w and (2 for g < 100 au
iceberg TNOs, in which uniform distributions in both w and €2 are displayed. For
TNOs with higher perihelia, the time for the apsidal line to go through one cycle be-
comes longer than the age of the Solar System (see the purple curve in Figure 6.2).
This is to say, there is not enough time for the giant planets to fully randomize
their phase angles if some sort of primordial orbital clustering was generated. Fig-
ure 6.33’s bottom panel shows that g > 120 au TNOs still possess clustering in @
and 2, preserved from the rogue’s effects from ~4 Gyr ago. This poses an inter-
esting question to future outer Solar System surveys: will TNOs with g > 120 au
have clustered orbits in phase angles? If so, one would expect the majority of such
detections to be clustered on the sky around a certain right ascension, because their
longitudes of perihelion are close to each other.

Last but not least, I also realized that Sedna-like orbits generally have apsidal

"®For example, the rogue in Figure 6.26 has an average apsidal precession rate of o7, = 0.6°/Myr,
so it only precessed ~100° in its entire ~100 Myr lifetime.
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precession periods in the order of billion years. If they really were produced by
the same dynamical process and possessed similar initial z, by ‘rewinding’ their
current longitudes of perihelion back to ~4 Gyr ago using Equation 6.7, one should
be able to directly see the primordial w clustering (similar to what is done to identify

asteroid families, Nesvorny et al. 2002).

360 /
270
B
S 180
B
901 A
¢ Sedna
VP13
¢ Leleakuhonua
O T T T T Il —
—45 —4.0 —3.0 —2.0 —1.0 0.0

Time (Gyr)

Figure 6.34: Rewinding the longitudes of perihelion () of three Sednoids
back to 4 Gyr ago appears to show primordial orbital clustering. The
three adopted TNOs (Sedna, 2012 VP;;3, and Leleakithonua) all have
apsidal precession periods (P) of the order ~1 Gyr and nearly-fixed
orbits with little a and g mobility (see dynamical classifications in Fig-
ure 6.28). This plot implies that they were likely all detached 4.3 -
4.0 Gyr ago (blue box) by the same dynamical process that also created
the primordial w clustering. If the orbital detachment was caused by a
rogue planet, it would have initial zo, o ~ 315°, because the maximum
q raising occurs at Aww = —90°.

As shown in Figure 6.34, I calculated their longitudes of perihelion w of the

three Sednoids around 4 Gyr ago by assuming constant precession rates as given
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in Equation 6.7 ', Surprisingly, their w all come close to w =~ 180°-270° as the
time rewinds to 4.3 - 4.0 Gyr ago (denoted by the blue box), right at the beginning
of the Solar System. The chance of this just being a coincidence is estimated to be
0.25% ~ 1.6%, though with post-facto reasoning. Therefore, this simple calcula-
tion provides potential evidence for the primordial apsidal clustering in the iceberg
population, consistent with the rogue planet origin. Specifically, given that fact that
the maximum perihelion detachment occurs at Aw = w — w, = —90° (Equa-
tion 6.24), the rogue planet would have been at @, o ~ 315° when it was first scat-

tered to several hundred au, thus picking out a preferential direction.

6.5 Discussion

I demonstrate that the rogue planet scenario is a viable solution to various puz-
zles in the outer Solar System. Rogue planet models seem to be the only known
models that can simultaneously explain the implantation of hot classicals, distant
resonant and detached, as well as the gigantic iceberg population that contains the
three most distant Sednoids. This is accomplished through the synergy of the rogue
planet and a slow eccentric Neptune migration. The rogue planet model presented
in this thesis has been compared against the real TNOs using the OSSOS survey
simulator. It is largely in line with the orbital distributions of detected TNOs, and
satisfies observational constraints provided by various outer Solar System surveys.
Here, I summarize the main results from the rogue planet model and its implication.

Working seamlessly with Neptune’s grainy migration. Neptune’s grainy mi-
gration is still considered the main dynamical mechanism that populates the a <
200 au Kuiper Belt. I show that rogue planet can be seen as one of the causes for
the migration graininess, not only because it constantly nudges Neptune’s orbit at
perihelion passages, but it also disturbs the a < 200 au Kuiper Belt through fly-
bys, enhancing both the resonant capture efficiency and the detachment efficiency
around resonances (see also Chapter 5). It is noteworthy the rogue planet model is

the only model that produces enough TNOs in distant resonances.

P Other iceberg TNOs either have precession rates that are too fast (so their lines cross the primor-
dial clustering anyways) or experience dynamical diffusion over the age of the Solar System (so their
w evolutions cannot be determined due to chaotic semimajor axis movement).
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Producing the iceberg population which explains the formation of Sednoids.
A rogue’s ~200 Myr presence at several hundred au naturally create an enormous
detached population which I call the iceberg. The resulting a, g, and i distribu-
tions produced by a scattering rogue planet are largely consistent with observations
(Figure 6.7). I estimate this population to host ~250,000 objects with diameter
D > 100 km, totalling ~0.25M¢, in mass. The currently-discovered 22 TNOs con-
sist of 0.01% of the entire population, only representing the ‘tip of the iceberg’. The
suggested ‘q gap by Trujillo & Sheppard (2014) and Kavelaars et al. (2020) is easily
reproduced with a small number of synthetic detections from the rogue planet, and
thus is plausibly just a statistical fluke that will disappear with additional discoveries.

The production of the iceberg 4 Gyr ago is closely related to the rogue’s secular
dynamics, which would have induced a primordial apsidal clustering. For TNOs
with g < 100 au, the longitudes of perihelion (o) are fully randomized by subse-
quent fast and differential precession rates. The precessions for g > 120 au objects,
however, are too slow to homogenize w, so the primordial orbital clustering could
persist to this day. Additionally, I compute the w evolutions for the three most dis-
tant TNOs with g > 55 au, concluding they indeed had nearly aligned apsidal lines
~4 Gyr ago. This provides another potential perspective to verify the rogue planet
hypothesis, and future outer Solar System surveys should provide a larger sample to
study the primordial orbital clustering in the iceberg.

Keeping the cold classical belt alive. Although the rogue continuously trans-
verses the cold classical belt, both my analytical estimates and numerical studies
demonstrate the stability of the cold classical belt in the presence of this rogue planet.
In this picture, the biggest perturber of the cold belt is still the 2:1 resonance that
likely swept through the whole belt during migration.

Oort Cloud building. In Section 5.5, I argued that the building of the Oort
Cloud is unlikely to be impeded by the presence of a temporary rogue planet, as
previous numerical studies by Lawler et al. (2017) show that even a 10 Mg, rogue that
existed for 4 Gyr would lower Oort cloud implantation efficiency by only a factor of
~2. The rogue planet can build an iceberg of 0.25Mg at 200 < a < 1500 au, which
is nearly an order-of-magnitude smaller than the estimated 1.3 + 0.9Mg mass of
the outer Oort Cloud (Boe et al., 2019). Moreover, the yet undiscovered inner Oort

Cloud is likely 1-2 times more massive than the outer Oort Cloud (Dones et al.,
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2004; Kaib & Volk, 2022). Therefore, the early lifting of a quarter of an Earth’s mass
from the scattering disk should not hinder the formation of the Oort Cloud (inner
+ outer), which is thought to contain cometary bodies with a total mass equal to
several times that of Earth.

A Neptune-scattered planet, like all the other early scattering disk objects, has
a small probability of being trapped in the Oort Cloud, rather than ejection. Dones
et al. (2004) estimated the Oort Cloud trapping efficiency is ~5%, while Brasser
& Morbidelli (2013) shows a moderately higher efficiency of ~7%. This suggests
there is at least ~5% chance that the 2Mg planet still resides in the Oort Cloud.
Alternatively, the biggest Oort Cloud body would be, on average, at the scale where
there were ~20 bodies in the massive disk, which would be roughly Mars scale.

Potential falsifications of the rogue planet hypothesis. The rogue planet model
presented here is based on our current understanding of the Solar System. It is note-
worthy that the model can account for various TNO populations without fine tuning
of the rogue planets parameters. While the rogue planet’s specific history is inher-
ently chaotic due to planetary scatterings, simulations of small body dynamics con-
sistently yield certain outcomes, including the insertion of many objects in distant
resonances, the creation of detached objects near resonances with a < 200 au, and
the production of an ‘iceberg’ beyond a > 200 au. As a scientific hypothesis, falsifi-
ability is an essential component. In the case of the scattering rogue planet model,
future discoveries that may fundamentally contradict the type of rogue histories I
discussed include: 1) a large fraction of high-i and even retrograde sednoids, 2) a
low-e and low-i primordial belt beyond 100 au, and 3) objects with g > 120 au (if
discovered) that do not exhibit orbital clustering. Future TNO surveys like LSST
(Collaboration et al., 2021), CLASSY (Fraser et al.,, 2022), DEEP (Trujillo et al.,
2022), and TAOS II (Huang et al., 2021) are expected to uncover more TNOs in
the outer Solar System. These surveys may either support or refute the rogue planet
hypothesis.

Comparison between outer Solar System formation hypotheses.

In Table 4.2, T compared different outer Solar System formation hypotheses
against confirmed observational constraints, including the original rogue planet
proposed by Gladman & Chan (2006). I updated the information for the rogue
planet model in Table 6.2 based on the new results in Chapter 5 and 6.
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Table 6.2: Comparison between different outer Solar System formation hypotheses

a <48au 48 < a < 200 au a > 200 au
Pri ial
Cold belt Detached Resonant | Sednoidsa,q  Sednoids i Curre.nt rlmor'd1a
clustering  clustering
Grainy Migration " " ) « o « o
Only
Stellar Flyby near-planar
> ? ? o< ?
(Birth Cluster) | 'min ~ 24020 ' fmin S 400A0 g v(@) '
Existing Planet
? ? ? 11 A.
(Planet Nine) v x g N
Rogue Planet +
Grainy Migration v v v v v g > 120au v

Note. Same as Table 4.2 but with the rogue planet model thoroughly inspected. The additional ‘Primordial clustering’ is a

new testable constraint that comes out of Section 6.4.5. A rogue planet model with some outward Neptune migration is a very
promising model that could explain the implantation of the observable hot Kuiper Belt.



Chapter 7

Future Work

This thesis provides new insights into transneptunian dynamics in the main Kuiper
Belt, the scattering disk, and under the influence of a rogue planet, offering new av-
enues for future research. There are still many questions that remain unanswered
and opportunities for further exploration. In this chapter, I will outline future di-
rections for research closely related to this thesis, including areas for improvement
in the current study and new opportunities that have arisen from the results this

work has provided.

1. Chapter 2 presents a reliable method to accurately compute free inclinations
for all non-resonant TNOs. Previous TNOs surveys, lacking a consensus on
where the mean plane of the Kuiper Belt is, chose to either follow the ecliptic
plane (e.g., the Deep Ecliptic Survey, Elliot et al. 2005) or the invariable plane
of the Solar System (e.g., CFEPS, Elliot et al. 2005, and OSSOS, Bannister
et al. 2018). This study confirms that there is not a ‘universal plane’ for the
main belt, as objects with different orbital elements each have their respective

forcing centers.

After finishing this paper, I joined the ongoing Classical and Large-a Dis-
tant Solar SYstem (crLassy) TNO surveys (Fraser et al., 2022) and did some
extra work on computing the ‘averaged forcing plane’ for existing main-belt
TNOs. The averaged plane, which, in theory, has the maximum number of
main-belt TNOs orbit, has i = 1.76° and Q2 = 89°, slightly different from
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the invariable plane of i = 1.58° and 2 = 108°. This average plane has been
adopted by the CLASSY team to polish the pointing strategies and maximum
the TNO detection rate. It will be interesting to see whether this plane will
indeed reveal more main-belt TNOs compared to previous surveys. In addi-
tion, using this plane should allow the survey to detect more objects with free
inclinations <1° (pervious surveys were unsensitive to them because of their
pointings). The current distribution of the cold belts free inclination has a
peak between 1-2° (see Figure 2.3), and CLASSY will likely reveal whether a

larger population of I < 1° cold classicals exists in the Kuiper Belt.

. Chapter 3 provides an intuitive understanding to the a— 1+

steady state of a
planet-scattering debris disk. The scattering timescale estimate (3.34) can be
applied to not only the Solar System’s Kuiper Belt, but also exoplanetary sys-
tems with observed disk disks (e.g., Fomalhaut, MacGregor et al. 2017, /3 Pic-
toris, Wahhaj et al. 2003, and AU Microscopii, Fitzgerald et al. 2007 ). Glad-
man & Volk (2021) show in their figure 9 that the Solar System’s Kuiper Belt
is visually similar to the Fomalhaut debris disk from the perspective of an
external observer. As another example, the outer part of AU Microscopii’s
debris disk is best fit by a surface density of ¥(r) oc r~2 from 32-300 au

~13 humber den-

(Fitzgerald et al., 2007), corresponding to the steady-state a
sity in semimajor axis. There is thus a constraint on the minimum mass of
the needed scatterer. My result provides a novel perspective to understand
the radial profile of debris disks if the vast majority of particles have crossing

orbits with (possibly unseen) planets.

. Chapters 5 and 6 presented the rogue planet hypothesis to explain orbital
distributions of Kuiper Belt TNOs. The enormous iceberg it produced be-
yond 200 au is particularly interesting, as it indicates that future Solar Sys-
tem surveys like LSST (Collaboration et al., 2021), CLASSY (Fraser et al.,
2022), DEEP (Trujillo et al., 2022), and TAOS II (Huang et al., 2021) might
find TNOs in this region. It is thus of great importance to study 1) whether
these TNOs are consistent with the ‘primordial orbital clustering’ proposed in
Section 6.4.5, 2) whether objects with perihelia higher than Sedna and 2012

VP13 will be discovered, and if so, 3) whether any current orbital clustering
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will be confirmed for TNOs with g > 120 au. I will work with the LSST and
the CLASSY teams to model the expectations. Additionally, the primordial
clustering in the four most distant TNOs was only demonstrated in a pre-
liminary way, with apsidal precession rates computed using the first-order
analytical theory. I intend to verify this potentially interesting phenomenon
with more accurate numerical simulations, which may require incorporating

the galactic tide.

. Therogue planet model in Section 6.4 was constructed assuming a 2Mg, planet
was quickly scattered out to several hundred au and then decoupled from Sat-
urn. In Section 6.2, I did limited exploration on the emplacement of such a
planet. However, it is still unclear what the most likely dynamical mecha-
nism for emplacing such a distant rogue is. Possible scenarios that could ad-
dress this problem include planetary migration, the rogue’s interaction with
the gaseous protoplanetary disk, and planetary instability (see the end of Sec-
tion 6.2). It would also be interesting to study whether an additional short-
lived (~10 Myr) ice giant (10-20 M), or a long-lived (~1 Gyr) Mars-scale
planet, at large a could create Sednoids; the scattering timescale constraints

shown in Figure 6.8 seem to disfavor such scenarios.

. I only focused on the scenario with one extra planet in this thesis, because
Gladman & Chan (2006) demonstrated that the secular lifting is largely in-
duced by the most massive planet. However, assuming more Earth-mass
cores existed in the early Solar System, the exact dynamical sculpting induced
by multiple rogues will differ somewhat from what a single rogue planet was
able to do. A detailed investigation of multiple extra planets is potentially
interesting in understanding the early formation and evolution of the Solar

System.

. The rogue planet explanation for the outer Solar System also provides a big-
ger picture for future free-floating planet (i.e., interstellar rogue planet) sur-
veys and exoplanet direct-imaging surveys. Free-floating planets with masses
ranging from that of Mars to gas giants are discovered in microlensing surveys
(see Mroz et al. 2019, 2018, 2020). The Nancy Grace Roman Space Telescope
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is expected to detect ~250 free-floating planets, including ~60 planets with
sub-Earth masses (Johnson et al., 2020). The direct imaging method detects
large-a exoplanets through their thermal emission. It was initially thought
that the object designated “Fomalhaut b” was a rogue planet on a highly ec-
centric orbit (Kalas et al., 2013) but the inability to detect the planet in the
infrared has led many workers to prefer that the observed moving structure
is a dispersing dust cloud from the disruption of a large comet in the system
(Lawler et al., 2015; Gaspar & Rieke, 2020), rather than a planet. Future dis-
covery of large-a exoplanets on highly-eccentric orbits could provide direct

observational evidence for the presented rogue planet hypothesis.

210



Bibliography

Adams, E. R,, Gulbis, A. A. S., Elliot, J. L., Benecchi, S. D., Buie, M. W,
Trilling, D. E. & Wasserman, L. H. (2014). The Astronomical Journal 148, 55
(page 37).

Adams, F. C. (2010). Annual Review of Astronomy and Astrophysics 48, 47
(pages 100, 102, 103, 114, 129, 131).

Adams, ]. C. (1846). Monthly Notices of the Royal Astronomical Society 7, 149
(pages 23, 105).

Armitage, P. J. (2020). Astrophysics of Planet Formation (2nd ed.) Cambridge:
Cambridge University Press (pages 92, 94, 168).

Baguet, D., Morbidelli, A. & Petit, J.-M. (2019). Icarus 334, 99 (page 52).

Bannister, M. T., Gladman, B. J., Kavelaars, J. J., Petit, ].-M., Volk, K., Chen, Y.-T.,
Alexandersen, M., Gwyn, S. D. J., Schwamb, M. E., Ashton, E., Benecchi, S. D.,
Cabral, N., Dawson, R. I, Delsanti, A., Fraser, W. C., Granvik, M.,
Greenstreet, S., Guilbert-Lepoutre, A., Ip, W.-H., Jakubik, M., Jones, R. L.,
Kaib, N. A., Lacerda, P., Laerhoven, C. V., Lawler, S., Lehner, M. J., Lin, H. W.,
Lykawka, P. S., Marsset, M., Murray-Clay, R., Pike, R. E., Rousselot, P.,
Shankman, C., Thirouin, A., Vernazza, P. & Wang, S.-Y. (2018). The
Astrophysical Journal Supplement Series 236, 18 (pages 26, 37, 38, 100, 116, 127,
190, 195, 207).

Bannister, M. T., Shankman, C., Volk, K., Chen, Y. T., Kaib, N., Gladman, B. .,
Jakubik, M., Kavelaars, J. J., Fraser, W. C., Schwamb, M. E., Petit, J.-M.,
Wang, S.-Y., Gwyn, S. D. J., Alexandersen, M. & Pike, R. E. (2017). The
Astronomical Journal 153, 0 (page 150).

Batygin, K., Adams, F. C., Batygin, Y. K. & Petigura, E. A. (2020). The Astronomical
Journal 159, 101 (pages 114, 117, 129).

211



Batygin, K., Adams, F. C., Brown, M. E. & Becker, J. C. (2019). Physics Reports, 1
(page352,107,131,136,197,200)

Batygin, K. & Brown, M. E. (2016a). The Astronomical Journal 151, 22 (pages 107,
136, 142, 200).

— (2016Db). The Astrophysical Journal Letters 833, L3 (pages 107, 197).
— (2021). The Astrophysical Journal Letters 910, L20 (pages 103, 104, 129).

Batygin, K., Brown, M. E. & Betts, H. (2012). The Astrophysical Journal Letters 744
(pages 102, 155, 169).

Batygin, K., Brown, M. E. & Fraser, W. C. (2011). The Astrophysical Journal 738, 13
(pages 52, 101, 128, 153).

Batygin, K., Mardling, R. A. & Nesvorny, D. (2021). The Astrophysical Journal 920,
148 (page 194).

Batygin, K. & Morbidelli, A. (2017). The Astronomical Journal 154, 229 (pages 107,
136).

Beaudoin, M., Gladman, B., Huang, Y., Bannister, M., Kavelaars, J., Petit, ].-M. &
Volk, K. (2023). submitted to PS] (pages 58, 86, 111, 174, 189-191).

Beaugé, C. (1994). Celestial Mechanics and Dynamical Astronomy 60, 225
(page 11).

Becker, J. C., Adams, F. C., Khain, T., Hamilton, S. J. & Gerdes, D. (2017). The
Astronomical Journal 154, 61 (page 107).

Benavidez, P. G., Campo Bagatin, A., Curry, J., Alvarez-Candal, A. & Vincent, J.-B.
(2022). Monthly Notices of the Royal Astronomical Society 514, 4876 (page 101).

Bernardinelli, P. H., Bernstein, G. M., Sako, M., Yanny, B., Aguena, M., Allam, S,
Andrade-Oliveira, F., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L.,
Rosell, A. C., Kind, M. C., Carretero, J., Conselice, C., Costanzi, M.,

Costa, L. N. d., Vicente, ]. D., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P.,
Eckert, K., Everett, S., Ferrero, L., Flaugher, B., Fosalba, P., Frieman, J.,
Garcia-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J.,
Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kent, S.,

Kuehn, K., Kuropatkin, N., Lahav, O., Maia, M. A. G., March, M.,

Menanteau, F., Miquel, R., Morgan, R., Myles, J., Ogando, R. L. C., Palmese, A.,
Paz-Chinchdn, F., Pieres, A., Malagén, A. A. P., Romer, A. K., Roodman, A,

212



Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I,
Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C,, Tarle, G., To, C.,
Varga, T. N. & Walker, A. R. (2022). The Astrophysical Journal Supplement
Series 258, 41 (pages 26, 37, 107, 112, 114, 116, 128, 131, 187, 190, 195, 201).

Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M. &
Malhotra, R. (2004). The Astronomical Journal 128, 1364 (pages 35, 36, 53).

Bernstein, G. (2004). Exploring the Solar System with Wide-Field Imaging from
Space. Berkeley, CA (page 105).

Beust, H. (2016). Astronomy & Astrophysics 590, L2 (page 136).

Birnstiel, T., Dullemond, C. P. & Brauer, F. (2010). Astronomy & Astrophysics 513,
A79 (page 94).

Birnstiel, T., Fang, M. & Johansen, A. (2016). Space Science Reviews 205, 41
(pages 90, 91).

Boe, B., Jedicke, R., Meech, K. J., Wiegert, P., Weryk, R. J., Chambers, K.,
Denneau, L., Kaiser, N., Kudritzki, R.-P., Magnier, E., Wainscoat, R. &
Waters, C. (2019). Icarus 333, 252 (page 204).

Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D.,
Caldwell, ]., Christensen-Dalsgaard, J., Cochran, W. D., DeVore, E.,
Dunham, E. W., Dupree, A. K., III, T. N. G., Geary, J. C,, Gilliland, R.,
Gould, A., Howell, S. B,, Jenkins, J. M., Kondo, Y., Latham, D. W,
Marcy, G. W., Meibom, S., Kjeldsen, H., Lissauer, J. J., Monet, D. G.,
Morrison, D., Sasselov, D., Tarter, J., Boss, A., Brownlee, D., Owen, T.,
Buzasi, D., Charbonneau, D., Doyle, L., Fortney, ., Ford, E. B., Holman, M. J.,
Seager, S., Steffen, J. H., Welsh, W. F., Rowe, J., Anderson, H., Buchhave, L.,
Ciardi, D., Walkowicz, L., Sherry, W., Horch, E., Isaacson, H., Everett, M. E.,
Fischer, D., Torres, G., Johnson, J. A., Endl, M., MacQueen, P., Bryson, S. T,
Dotson, J., Haas, M., Kolodziejczak, ]., Cleve, J. V., Chandrasekaran, H.,
Twicken, J. D., Quintana, E. V., Clarke, B. D., Allen, C., Li, J., Wu, H,,
Tenenbaum, P., Verner, E., Bruhweiler, F., Barnes, J. & Prsa, A. (2010). Science
327,977 (page 108).

Bottke, W. F., Durda, D. D., Nesvorny, D., Jedicke, R., Morbidelli, A.,
Vokrouhlicky, D. & Levison, H. (2005). Icarus 175, 111 (page 24).

Bottke, W. F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H. F., Michel, P. &
Metcalfe, T. S. (2002). Icarus 156, 399 (page 25).

213



Bottke, W. F. & Norman, M. D. (2017). Annual Review of Earth and Planetary
Sciences 45, 619 (page 97).

Bouvard, A. (1824). Astronomische Nachrichten 2, 441 (page 105).
Brasser, R., Duncan, M. & Levison, H. (2006). Icarus 184, 59 (page 129).

Brasser, R., Duncan, M., Levison, H., Schwamb, M. & Brown, M. (2012). Icarus
217, 1 (page 103).

Brasser, R. & Morbidelli, A. (2013). Icarus 225, 40 (pages 101, 117, 205).

Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K. & Levison, H. F. (2009).
Astronomy & Astrophysics 507, 1053 (page 101).

Brasser, R. & Schwamb, M. E. (2014). Monthly Notices of the Royal Astronomical
Society 446, 3788 (pages 103, 104, 117, 131, 197).

Brasser, R., Walsh, K. J. & Nesvorny, D. (2013). Monthly Notices of the Royal
Astronomical Society 433, 3417 (pages 101, 102).

Brouwer, D. & Clemence, G. M. (1961). Methods of Celestial Mechanics (page 12).

Brouwer, D. & Woerkom, A. J. J. v. (1950). The Secular Variations of the Orbital
Elements of the Principal Planets. Vol. 13. Astronomical papers prepared for the
use of the American ephemeris and nautical almanac. U.S. Government
Printing Office (pages 14, 46).

Brown, M. E., Trujillo, C. A. & Rabinowitz, D. L. (2005). The Astrophysical Journal
Letters 635, L97 (page 23).

Brown, M. E. (2001). The Astronomical Journal 121, 2804 (pages 35, 53, 105, 118).
Brown, M. E. & Batygin, K. (2021). The Astronomical Journal 162, 219 (page 108).
Brown, M. E. & Pan, M. (2004). The Astronomical Journal 127, 2418 (page 37).

Brown, M. E., Trujillo, C. & Rabinowitz, D. (2004). The Astrophysical Journal 617,
645 (pages 29, 103, 106, 107, 195).

Broz, M. & Vokrouhlicky, D. (2008). Monthly Notices of the Royal Astronomical
Society 390, 715 (page 25).

Brunini, A. & Melita, M. D. (1998). Icarus 135, 408 (page 31).

214



Brunini, A. & Melita, M. (2002). Icarus 160, 32 (pages 106, 107, 109).

Burns, J. A., Gladman, B. ]. & Greenberg, R.J. (2022). Unpublished Celestial
Mechanics Book (pages 2, 68, 247).

Caceres, ]. & Gomes, R. (2018). The Astronomical Journal 156, 157 (page 107).

Chambers, J. E. (1999). Monthly Notices of the Royal Astronomical Society 304, 793
(pages 17, 119, 155, 162, 240).

Chen, Y. T, Lin, H. W,, Ip, W. H., Chen, W. P, Lin, H. W., Holman, M. J.,
Payne, M. ], Fraser, W. C,, Lacerda, P., Wing-Huen, I. P., Kudritzki, R.-P,,
Jedicke, R., Wainscoat, R. J., Tonry, J. L., Magnier, E. A., Waters, C., Kaiser, N.,
Wang, S.-Y. & Lehner, M. (2016). The Astrophysical Journal Letters 827, 1.24
(page 86).

Chiang, E. I. & Goldreich, P. (1997). The Astrophysical Journal 490, 368 (page 90).
Chiang, E. I, Jordan, A. B., Millis, R. L., Buie, M. W., Wasserman, L. H.,

Elliot, J. L., Kern, S. D., Trilling, D. E., Meech, K. J. & Wagner, R. M. (2003).
The Astronomical Journal 126, 430 (page 99).

Chiang, E., Lithwick, Y., Murray-Clay, R., Buie, M., Grundy, W. & Holman, M.
(2006). A Brief History of Transneptunian Space. Ed. by B. Reipurth & D. Jewi.
Protostars and Planets V. Tucson: University of Arizona Press (page 117).

Chiang, E. & Choi, H. (2008). The Astronomical Journal 136, 350 (pages 37, 41, 43).

Collaboration, T. L. S. S. S., Jones, R. L., Chesley, S. R., Connolly, A. .,
Harris, A. W, Ivezic, Z., Knezevic, Z., Kubica, J., Milani, A. & Trilling, D. E.
(2009). Earth, Moon, and Planets 105, 101 (page 116).

Collaboration, V. C. R. O. L. S. S. S., Jones, R. L., Bannister, M. T., Bolin, B. T.,
Chandler, C. O., Chesley, S. R, Eggl, S., Greenstreet, S., Holt, T. R.,
Hsieh, H. H., Ivezic, Z., Juric, M., Kelley, M. S. P., Knight, M. M., Malhotra, R.,
Oldroyd, W.]., Sarid, G., Schwamb, M. E., Snodgrass, C., Solontoi, M. &
Trilling, D. E. (2021). Bulletin of the AAS 53 (pages 26, 193, 198, 205, 208).

Connors, M., Wiegert, P. & Veillet, C. (2011). Nature 475, 481 (page 32).

Crida, A. (2009). The Astrophysical Journal 698, 606 (page 95).

215



Crompvoets, B. L., Lawler, S. M., Volk, K., Chen, Y.-T., Gladman, B., Peltier, L.,
Alexandersen, M., Bannister, M. T., Gwyn, S., Kavelaars, J. J. & Petit, J.-M.
(2022). The Planetary Science Journal 3, 113 (pages 111, 112, 116, 117, 190).

Cuk, M., Hamilton, D. P. & Holman, M. J. (2012). Monthly Notices of the Royal
Astronomical Society 426, 3051 (page 31).

Dawson, R. I. & Johnson, J. A. (2018). Annual Review of Astronomy and
Astrophysics 56, 175 (page 94).

Dawson, R. I. & Murray-Clay, R. (2012). The Astrophysical Journal 750, 43
(pages 36, 52, 128, 150).

Delsanti, A. & Jewitt, D. (2006). Solar System Update: The Solar System Beyond The
Planets. Springer Praxis Books. Berlin: Springer (page 29).

Dones, L., Weissman, P., Levison, H. & Duncan, M. (2004). Oort Cloud Formation
and Dynamics. Ed. by M. C. Festou, H. U. Keller & H. A. Weaver. Comet II.
Tucson: The University of Arizona Press (pages 28, 84, 113, 129, 204, 205).

Doressoundiram, A. (2003). Earth, Moon, and Planets 92, 131 (page 36).

Doressoundiram, A., Peixinho, N., Bergh, C. d., Fornasier, S., Thébault, P.,
Barucci, M. A. & Veillet, C. (2002). The Astronomical Journal 124, 2279
(page 36).

Duncan, M., Quinn, T. & Tremaine, S. (1987). The Astronomical Journal 94, 1330
(pages 30, 59, 62, 63, 79, 129, 180).

Duncan, M. J. & Levison, H. F. (1997). Science 276, 1670 (pages 28, 111).

Duncan, M. J., Levison, H. F. & Lee, M. H. (1998). The Astronomical Journal 116,
2067 (page 17).

Edgeworth, K. E. (1949). Monthly Notices of the Royal Astronomical Society 109,
600 (page 26).

Einstein, A. (1916). (Page 106).

Elliot, J. L., Kern, S. D., Clancy, K. B., Gulbis, A. A. S., Millis, R. L., Buie, M. W,
Wasserman, L. H., Chiang, E. I, Jordan, A. B., Trilling, D. E. & Meech, K. J.
(2005). The Astronomical Journal 129, 1117 (pages 26, 35, 37, 207).

216



Emel'yanenko, V. V., Asher, D. J. & Bailey, M. E. (2003). Monthly Notices of the
Royal Astronomical Society 338, 443 (page 29).

Evans, N. W. & Tabachnik, S. A. (2002). Monthly Notices of the Royal Astronomical
Society 333, L1 (page 31).

Evans, N. W. & Tabachnik, S. (1999). Nature 399, 41 (pages 31, 32).
Fernandez, J. A. (1981). Astronomy ¢ Astrophysics 96, 26 (pages 29, 62).
Fernandez, J. & Ip, W.-H. (1984). Icarus 58, 109 (page 98).

Fernandez-Valenzuela, E., Pinilla-Alonso, N., Stansberry, J., Emery, J. P.,
Perkins, W., Laerhoven, C. V., Gladman, B. J., Fraser, W., Cruikshank, D.,
Lellouch, E., Miiller, T. G., Grundy, W. M., Trilling, D., Fernandez, Y. &
Ore, C. D. (2021). The Planetary Science Journal 2, 10 (page 36).

Fienga, A., Deram, P., Viswanathan, V., Ruscio, A. D., Bernus, L., Durante, D.,
Gastineau, M. & Laskar, J. (2019). Notes Scientifiques et Techniques de I'Institut
de Mecanique Celeste 109 (page 108).

Fienga, A., Ruscio, A. D., Bernus, L., Deram, P., Durante, D., Laskar, J. & Iess, L.
(2020). Astronomy & Astrophysics 640, A6 (page 108).

Fitzgerald, M. P., Kalas, P. G., Duchéne, G., Pinte, C. & Graham, J. R. (2007). The
Astrophysical Journal 670, 536 (page 208).

Fraser, W. C., Bannister, M. T., Pike, R. E., Marsset, M., Schwamb, M. E.,
Kavelaars, J. J., Lacerda, P., Nesvorny, D., Volk, K., Delsanti, A., Benecchi, S.,
Lehner, M. J., Noll, K., Gladman, B., Petit, ].-M., Gwyn, S., Chen, Y.-T,,

Wang, S.-Y., Alexandersen, M., Burdullis, T., Sheppard, S. & Truyjillo, C. (2017).
Nature Astronomy 1, 0088 (page 91).

Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A. & Batygin, K. (2014). The
Astrophysical Journal 782, 100 (pages 36, 101).

Fraser, W. C., Brown, M. E. & Schwamb, M. E. (2010). Icarus 210, 944 (page 35).

Fraser, W, Lawler, S., Ashton, E., Chen, Y.-T,, Huang, Y., Gladman, B,
Kavelaars, J., Petit, J.-M., Peltier, L., Pike, R., Alexandersen, M., Hestroffer, D.,
Noyelles, B., Chang, C.-K., Wang, S.-Y., Connolly, A., Kalmbach, B.,
Eduardo, M., Juric, M. & Gwyn, S. (2022). AAS/Division for Planetary
Sciences Meeting Abstracts 54, 414.01 (pages 205, 207, 208).

217



Froeschle, C. & Morbidelli, A. (1994). Symposium - International Astronomical
Union 160, 189 (page 44).

Gaspar, A. & Rieke, G. H. (2020). Proceedings of the National Academy of Sciences
117, 9712 (page 210).

Gladman, B. & Chan, C. (2006). The Astrophysical Journal 643, L135 (pages viii,
109-111, 114,117,122, 130-133, 205, 209).

Gladman, B. & Duncan, M. (1990). The Astronomical Journal 100, 1680 (page 31).

Gladman, B., Holman, M., Grav, T., Kavelaars, J., Nicholson, P., Aksnes, K. &
Petit, J.-M. (2002). Icarus 157, 269 (pages viii, 28, 29, 103, 106, 117, 120).

Gladman, B., Kavelaars, J., Petit, J. .-.-M., Ashby, M. L. N., Parker, ., Coftey, J.,
Jones, R. L., Rousselot, P. & Mousis, O. (2009). The Astrophysical Journal 697,
L91 (page 86).

Gladman, B., Lawler, S. M., Petit, ]. M., Kavelaars, J., Jones, R. L., Parker, J. W.,
Laerhoven, C. V., Nicholson, P., Rousselot, P., Bieryla, A. & Ashby, M. L. N.
(2012). The Astronomical Journal 144, 23 (pages 52, 112, 116, 127, 191).

Gladman, B. (2005). Science 307, 71 (page 128).

Gladman, B. J., Migliorini, F., Morbidelli, A., Zappala, V., Michel, P., Cellino, A.,
Froeschlé, C., Levison, H. F., Bailey, M. & Duncan, M. (1997). Science 277, 197
(page 25).

Gladman, B., Marsden, B. G. & Vanlaerhoven, C. (2008). Nomenclature in the
Outer Solar System. Ed. by M. A. Barucci, H. Boehnhardt, D. P. Cruikshank &
A. Morbidelli. Vol. 43. The Solar System Beyond Neptune. Tucson: University
of Arizona Press (pages 26, 29, 39, 116, 122, 185).

Gladman, B. & Volk, K. (2021). Annual Review of Astronomy and Astrophysics 59,
203 (pages 27, 35, 36, 38, 39, 43, 100, 101, 110, 117, 127, 153, 185, 208).

Goldreich, P. & Tremaine, S. (1980). The Astrophysical Journal 241, 425 (pages 94,
168).

Gomes, D. C. H., Murray, Z., Gomes, R. C. H., Holman, M. J. & Bernstein, G. M.
(2022). arXiv (page 108).

Gomes, R. S., Fernandez, J. A., Gallardo, T. & Brunini, A. (2008). The Scattered
Disk: Origins, Dynamics, and End States. Ed. by M. A. Barucci, H. Boehnhardt,

218



D. P. Cruikshank & A. Morbidelli. The Solar System Beyond Neptune. Tucson:
University of Arizona Press (pages 117, 120).

Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. (2005a). Nature 435, 466
(pages 101, 168).

Gomes, R. S. (2003). Icarus 161, 404 (page 99).

Gomes, R. S., Gallardo, T., Fernandez, J. A. & Brunini, A. (2005b). Celestial
Mechanics and Dynamical Astronomy 91, 109 (pages 170, 187).

Gomes, R. S., Matese, J. ]. & Lissauer, J. J. (2006). Icarus 184, 589 (pages 106, 117).
Gomes, R. S., Morbidelli, A. & Levison, H. F. (2004). Icarus 170, 492 (page 100).
Gradie, J. & Tedesco, E. (1982). Science 216, 1405 (page 96).

Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W. F., Beshore, E.,
Vokrouhlicky, D., Nesvorny, D. & Michel, P. (2018). Icarus 312, 181 (page 25).

Greenstreet, S. (2020). Monthly Notices of the Royal Astronomical Society: Letters
(page 25).

Greenstreet, S., Gladman, B. & Ngo, H. (2020). The Astronomical Journal 160, 0
(pages 32, 86).

Greenstreet, S., Ngo, H. & Gladman, B. (2012). Icarus 217, 355 (page 25).
Guillot, T. (1999). Planetary and Space Science 47, 1183 (pages 92, 94).
Hahn, J. M. & Malhotra, R. (1999). The Astronomical Journal 117, 3041 (page 98).

Hahn, J. M. & Malhotra, R. (2005). The Astronomical Journal 130, 2392 (pages 99,
117,191, 199).

Hansen, B. M. S. (2009). The Astrophysical Journal 703, 1131 (page 95).

Hayashi, C. (1981). Progress of Theoretical Physics Supplement 70, 35 (page 95).
Henrard, J. (1990). Celestial Mechanics and Dynamical Astronomy 49, 43 (page 44).
Hill, G. W. (1878). American Journal of Mathematics 1, 129 (page 66).

Hills, J. G. (1981). The Astronomical Journal 86, 1730 (page 30).

Holman, M. J. (1997). Nature 387, 785 (page 31).

219



Holman, M. J. & Wisdom, J. (1993). The Astronomical Journal 105, 1987 (page 31).
Horner, J., Evans, N. W. & Bailey, M. E. (2004). arXiv (page 25).

Huang, C.-K., Lehner, M. J., Contreras, A. P. G., Castro-Chacoén, J. H., Chen, W.-P,,
Alcock, C., Alvarez-Santana, F. I., Cook, K. H., Geary, J. C., Pefia, C. A. G,,
Hernéndez—Aguila, J. B., Hernandez-Valencia, B., Karr, J., Kavelaars, J. J.,
Norton, T., Nuilez, ]. M., Ochoa, D., Reyes-Ruiz, M., Sanchez, E., Silva, J. S.,
Szentgyorgyi, A., Wang, S.-Y., Yen, W.-L. & Zhang, Z.-W. (2021). Publications
of the Astronomical Society of the Pacific 133, 034503 (pages 205, 208).

Huang, Y. & Gladman, B. (2020). Monthly Notices of the Royal Astronomical
Society 500, 1151 (page 31).

Huang, Y., Gladman, B., Beaudoin, M. & Zhang, K. (2022a). The Astrophysical
Journal Letters 938, L23 (page 23).

Huang, Y., Gladman, B. & Volk, K. (2022b). The Astrophysical Journal Supplement
Series 259, 54 (page 129).

Huang, Y., Li, M,, Li, J. & Gong, S. (2018). The Astronomical Journal 155, 262
(page 4).

Ida, S., Larwood, J. & Burkert, A. (2000). The Astrophysical Journal 528, 351
(page 103).

Ida, S. & Makino, J. (1993). Icarus 106, 210 (page 93).
Jewitt, D. (2009). The Astronomical Journal 137, 4296 (page 25).
Jewitt, D. & Luu, J. (1993). Nature 362, 730 (pages 26, 106).

Johansen, A., Low, M.-M. M., Lacerda, P. & Bizzarro, M. (2015). Science Advances
1, €1500109 (page 91).

Johansen, A., Oishi, J. S., Low, M.-M. M., Klahr, H., Henning, T. & Youdin, A.
(2007). Nature 448, 1022 (page 90).

Johnson, S. A., Penny, M., Gaudi, B. S., Kerins, E., Rattenbury, N. J., Robin, A. C,,
Novati, S. C. & Henderson, C. B. (2020). The Astronomical Journal 160, 123

(page 210).

Jones, R., Gladman, B., Petit, J.-M., Rousselot, P., Mousis, O., Kavelaars, J.,
Bagatin, A. C,, Bernabeu, G., Benavidez, P., Parker, J., Nicholson, P.,

220



Holman, M., Grav, T., Doressoundiram, A., Veillet, C., Scholl, H. & Mars, G.
(2006). Icarus 185, 508 (pages 26, 37).

Kaib, N. A. & Sheppard, S. S. (2016). The Astronomical Journal 152, 133 (pages 100,
112,117,120, 131, 172, 186, 187).

Kaib, N. A. & Volk, K. (2022). arXiv (pages 154, 196, 205).

Kalas, P., Graham, J. R, Fitzgerald, M. P. & Clampin, M. (2013). The Astrophysical
Journal 775, 56 (page 210).

Kavelaars, J. J., Petit, ].-M., Gladman, B., Bannister, M. T., Alexandersen, M.,
Chen, Y.-T., Gwyn, S. D. J. & Volk, K. (2021). The Astrophysical Journal Letters
920, L28 (pages 28, 35, 37, 91).

Kavelaars, J., Lawler, S. M., Bannister, M. T. & Shankman, C. (2020). Perspectives
on the distribution of orbits of distant Trans-Neptunian objects. Vol. astro-ph.EP.
The Trans-Neptunian Solar System. Elsevier (pages 110, 112, 197, 204).

Kenyon, S. J. & Bromley, B. C. (2004). Nature 432, 598 (pages 103, 197).

Khain, T., Becker, J. C., Adams, F. C., Gerdes, D. W., Hamilton, S. J., Franson, K.,
Zullo, L., Sako, M., Napier, K., Lin, H. W., Markwardt, L., Bernardinelli, P.,
Abbott, T. M. C., Abdalla, F. B., Annis, J., Avila, S., Bertin, E., Brooks, D.,
Rosell, A. C., Kind, M. C,, Carretero, J., Cunha, C. E., Costa, L. N. d., Davis, C.,
Vicente, J. D., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Flaugher, B.,
Frieman, J., Garcia-Bellido, J., Gruen, D., Gruend], R. A., Gutierrez, G.,
Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Krause, E.,
Kuehn, K., Kuropatkin, N., Lahav, O., Maia, M. A. G., Menanteau, F.,

Miquel, R., Nord, B., Ogando, R. L. C,, Plazas, A. A,, Romer, A. K., Sanchez, E.,
Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M.,
Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C,, Tarle, G.,
Vikram, V., Walker, A. R., Wester, W., Zhang, Y. & Collaboration, D. (2018).
The Astronomical Journal 156, 273 (page 107).

Khain, T., Becker, J. C., Lin, H. W, Gerdes, D. W., Adams, F. C., Bernardinelli, P.,
Bernstein, G. M., Franson, K., Markwardt, L., Hamilton, S., Napier, K.,
Sako, M., Abbott, T. M. C,, Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E.,
Burke, D. L., Rosell, A. C., Kind, M. C., Carretero, J., Costa, L. N. d.,
Vicente, J. D., Desai, S., Diehl, H. T., Doel, P., Flaugher, B., Frieman, J.,
Garcia-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J.,
Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kuropatkin, N.,

221



Maia, M. A. G, Marshall, J. L., Menanteau, F., Miller, C. J., Miquel, R.,

Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I.,
Smith, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Walker, A. R,
Wester, W. & Collaboration, T. D. E. S. (2020). The Astronomical Journal 159,
133 (page 39).

Kley, W., Bitsch, B. & Klahr, H. (2009). Astronomy & Astrophysics 506, 971
(page 95).

Knezevié, Z., Milani, A., Farinella, P., Froeschle, C. & Froeschle, C. (1991). Icarus
93, 316 (page 49).

Kokubo, E. & Ida, S. (1996). Icarus 123, 180 (page 93).

— (1998). Icarus 131, 171 (page 93).

— (2000). Icarus 143, 15 (page 93).

— (2002). The Astrophysical Journal 581, 666 (page 93).

Kozai, Y. (1962). The Astronomical Journal 67, 579 (page 120).
Krajnovi¢, D. (2016). Astronomy & Geophysics 57, 5.28 (pages 23, 105).

Kretke, K. A., Levison, H. F., Buie, M. W. & Morbidelli, A. (2012). The
Astronomical Journal 143, 91 (page 169).

Kuiper, G. P. (1951). Proceedings of the National Academy of Sciences 37, 1
(page 26).

Lan, L. & Malhotra, R. (2019). Celestial Mechanics and Dynamical Astronomy 131,
39 (page 125).

Landau, L. D. & Lifshitz, E. M. (2013). Fluid Mechanics: Landau and Lifshitz:
Course of Theoretical Physics. Vol. 6. Elsevier (page 76).

Lawler, S. M., Greenstreet, S. & Gladman, B. (2015). The Astrophysical Journal
Letters 802, L20 (page 210).

Lawler, S. M., Pike, R. E., Kaib, N., Alexandersen, M., Bannister, M. T.,
Chen, Y. .-.-T,, Gladman, B., Gwyn, S., Kavelaars, J. J., Petit, J. .-.-M. & Volk, K.
(2019). The Astronomical Journal 157, 253 (pages 100, 112, 131, 187).

Lawler, S. M., Shankman, C., Kaib, N., Bannister, M. T., Gladman, B. &
Kavelaars, J. J. (2017). The Astronomical Journal 153, 33 (pages 113, 129, 204).

222



Lawler, S. M., Shankman, C., Kavelaars, J. J., Alexandersen, M., Bannister, M. T.,
Chen, Y.-T., Gladman, B., Fraser, W. C., Gwyn, S., Kaib, N., Petit, J. .-.-M. &
Volk, K. (2018a). The Astronomical Journal 155, 197 (pages 116, 190).

Lawler, S. M., Kavelaars, J. J., Alexandersen, M., Bannister, M. T., Gladman, B,
Petit, J.-M. & Shankman, C. (2018b). Frontiers in Astronomy and Space Sciences
5,14(pagesvﬁLix,110,127,188,189)

Levison (1996). Comet Taxonomy. Vol. 107. Astronomical Society of the Pacific
Conference Series (page 10).

Levison, H. F. & Duncan, M. J. (1994). Icarus 108, 18 (pages 17, 29, 118, 119, 238).
Levison, H. F. & Duncan, M. J. (1997). Icarus 127, 13 (pages vii, 69, 118, 154).

Levison, H. F., Morbidelli, A., VanLaerhoven, C., Gomes, R. & Tsiganis, K. (2008).
Icarus 196, 258 (pages 101, 191).

Levison, H. F., Shoemaker, E. M. & Shoemaker, C. S. (1997). Nature 385, 42
(page 25).

Levison, H. F. & Stern, S. A. (2001). The Astronomical Journal 121, 1730 (page 35).
Lin, D. N. C. & Ida, S. (1997). The Astrophysical Journal 477, 781 (page 109).

Lin, D. N. C. & Papaloizou, J. (1986). The Astrophysical Journal 309, 846 (pages 94,
168).

Lissauer, J. J. (1993). Annual Review of Astronomy and Astrophysics 31, 129
(page 94).

Lissauer, J. J., Hubickyj, O., D’Angelo, G. & Bodenheimer, P. (2009). Icarus 199,
338 (page 94).

Lissauer, J. J. & de-Pater, I. (2013). Fundamental Planetary Science (pages 76, 89,
92,94, 95, 168).

Lissauer, J. J. & Stevenson, D. J. (2007). “Formation of Giant Planets”. Protostars
and Planets V, p. 591 (page 94).

Lowell, P. (1915). Memoir on a Trans-Neptunian Planet. Memoirs of the Lowell
Observatory. T.P. Nichols (page 23).

Lykawka, P. S. & Mukai, T. (2008). The Astronomical Journal 135, 1161 (pages 106,
117).

223



Lykawka, P. S. & Mukai, T. (2007). Icarus 192, 238 (pages 28, 120).

MacGregor, M. A., Matra, L., Kalas, P., Wilner, D. J., Pan, M., Kennedy, G. M.,
Wyatt, M. C., Duchene, G., Hughes, A. M., Rieke, G. H., Clampin, M.,
Fitzgerald, M. P., Graham, ]J. R., Holland, W. S, Pani¢, O., Shannon, A. &
Su, K. (2017). The Astrophysical Journal 842, 8 (page 208).

Malhotra, R. (1995). The Astronomical Journal 110, 420 (pages 28, 99).
Malhotra, R. (1993). Nature 365, 819 (pages 98, 99, 171).

Malhotra, R., Volk, K. & Wang, X. (2016). The Astrophysical Journal Letters 824,
122 (page 108).

Malyshkin, L. & Tremaine, S. (1999). Icarus 141, 341 (pages 28, 61, 62, 79).

Mardling, R. A. (2013). Monthly Notices of the Royal Astronomical Society 435,
2187 (pages 12, 140).

Markwardt, L., Gerdes, D. W., Malhotra, R., Becker, J. C., Hamilton, S. J. &
Adams, F. C. (2020). Monthly Notices of the Royal Astronomical Society 492,
6105 (page 32).

Martin, R. G. & Livio, M. (2012). Monthly Notices of the Royal Astronomical
Society: Letters 425, L6 (page 90).

Masset, F. & Snellgrove, M. (2001). Monthly Notices of the Royal Astronomical
Society 320, L55 (page 96).

Melita, M. & Williams, I. P. (2003). Earth, Moon, and Planets 92, 447 (page 107).

Melita, M., Williams, I., Collander-Brown, S. J. & Fitzsimmons, A. (2004). Icarus
171, 516 (page 107).

Michael, S., Durisen, R. H. & Boley, A. C. (2011). The Astrophysical Journal Letters
737, L42 (page 95).

Michel, P. & Froeschlé, C. (1997). Icarus 128, 230 (page 44).
Millholland, S. & Laughlin, G. (2017). The Astronomical Journal 153, 91 (page 107).
Morais, H. & Namouni, F. (2017). Nature 543, 635 (page 25).

Morais, M. (2002). Icarus 160, 1 (page 32).

224



Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R. & Levison, H. F. (2009).
Astronomy & Astrophysics 507, 1041 (page 101).

Morbidelli, A., Brown, M. & Levison, H. (2003). Earth, Moon, and Planets 92, 1
(page 28).

Morbidelli, A., Jacob, C. & Petit, J.-M. (2002). Icarus 157, 241 (pages 106, 128).

Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. (2005). Nature 435, 462
(pages 101, 168).

Morbidelli, A., Thomas, F. & Moons, M. (1995). Icarus 118, 322 (page 124).

Morbidelli, A. (2002). Modern Celestial Mechanics: Aspects of Solar System
Dynamics. CRC Press (pages 2, 6, 44, 49, 136).

Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F. & Tsiganis, K. (2010). The
Astronomical Journal 140, 1391 (page 101).

Morbidelli, A. & Henrard, J. (1991). Celestial Mechanics and Dynamical Astronomy
51, 131 (page 44).

Morbidelli, A. & Levison, H. F. (2004). The Astronomical Journal 128, 2564
(pages 103,109, 117, 129, 197).

Morbidelli, A. & Nesvorny, D. (2020). Kuiper belt: Formation and evolution. The
Trans-Neptunian Solar System (page 91).

Mroéz, P., Poleski, R., Gould, A., Udalski, A., Sumi, T., Szymanski, M. K.,
Soszynski, I., Pietrukowicz, P., Kozlowski, S., Skowron, J., Ulaczyk, K.,
Albrow, M. D., Chung, S.-J., Han, C., Hwang, K.-H., Jung, Y. K., Kim, H.-W,,
Ryu, Y.-H., Shin, L.-G., Shvartzvald, Y., Yee, ]. C., Zang, W., Cha, S.-M.,

Kim, D.-J., Kim, S.-L., Lee, C.-U,, Lee, D.-],, Lee, Y., Park, B.-G. & Pogge, R. W.
(2020). The Astrophysical Journal Letters 903, L11 (pages 109, 209).

Mréz, P., Ryu, Y. .-.-H., Skowron, J., Udalski, A., Gould, A., Szymanski, M. K.,
Soszynski, I., Poleski, R., Pietrukowicz, P., Koztowski, S., Pawlak, M.,
Ulaczyk, K., Collaboration, T. O., Albrow, M. D., Chung, S. .-.-]., Jung, Y. K.,
Han, C,, Hwang, K. .-.-H,, Shin, L. .-.-G,, Yee, J. C., Zhu, W,, Cha, S. .-.-M.,,
Kim, D. .-.-]., Kim, H. .-.-W,, Kim, S. .-.-L., Lee, C. .-.-U., Lee, D. .-.-],, Lee, Y.,
Park, B. .-.-G., Pogge, R. W. & Collaboration, T. K. (2018). The Astronomical
Journal 155, 121 (pages 109, 209).

225



Mroz, P., Udalski, A., Bennett, D. P., Ryu, Y.-H., Sumi, T., Shvartzvald, Y.,
Skowron, J., Poleski, R., Pietrukowicz, P., Koztowski, S., Szymanski, M. K,,
Wyrzykowski, L., Soszynski, I., Ulaczyk, K., Rybicki, K., Iwanek, P.,

Albrow, M. D., Chung, S.-J., Gould, A., Han, C., Hwang, K.-H., Jung, Y. K.,
Shin, I.-G,, Yee, J. C., Zang, W., Cha, S.-M., Kim, D.-].,, Kim, H.-W,, Kim, S.-L.,
Lee, C.-U, Lee, D.-],, Lee, Y., Park, B.-G., Pogge, R. W, Abe, F., Barry, R,,
Bhattacharya, A., Bond, I. A., Donachie, M., Fukui, A., Hirao, Y., Itow, Y.,
Kawasaki, K., Kondo, 1., Koshimoto, N., Li, M. C. A., Matsubara, Y.,

Muraki, Y., Miyazaki, S., Nagakane, M., Ranc, C., Rattenbury, N. J.,

Suematsu, H., Sullivan, D. J., Suzuki, D., Tristram, P. J., Yonehara, A.,

Maoz, D., Kaspi, S. & Friedmann, M. (2019). Astronomy & Astrophysics 622,
A201 (pages 109, 209).

Miiller, T., Lellouch, E. & Fornasier, S. (2020). The Trans-Neptunian Solar System,
153 (page 36).

Murray, C. D. & Dermott, S. F. (1999). Solar System Dynamics. Cambridge
University Press (pages 2, 6, 12, 36, 43, 137, 140).

Nakamura, E., KOBAYASHI, K., TANAKA, R., KUNIHIRO, T., KITAGAWA, H.,
POTISZIL, C., OTA, T., SAKAGUCH]I, C., YAMANAKA, M.,
RATNAYAKE, D. M., TRIPATHI, H., KUMAR, R., AVRAMESCU, M.-L.,
TSUCHIDA, H., YACHL Y., MIURA, H., ABE, M., FUKAI R,, FURUYA, S,
HATAKEDA, K., HAYASHI, T., HITOM], Y., KUMAGAL K., MIYAZAKI, A.,
NAKATO, A., NISHIMURA, M., OKADA, T., SOEJIMA, H., SUGITA, S,
SUZUKI, A., USUL T., YADA, T., YAMAMOTO, D., YOGATA, K,,
YOSHITAKE, M., ARAKAWA, M., FUJII, A., HAYAKAWA, M., HIRATA, N,
HIRATA, N., HONDA, R., HONDA, C., HOSODA, S., IIJ]IMA, Y.-i.,
IKEDA, H., ISHIGURO, M., ISHIHARA, Y., IWATA, T., KAWAHARA, K.,
KIKUCHL, S., KITAZATO, K., MATSUMOTO, K., MATSUOKA, M.,
MICHIKAM]I, T., MIMASU, Y., MIURA, A., MOROTA, T., NAKAZAWA, S.,
NAMIKI, N., NODA, H., NOGUCHI, R., OGAWA, N., OGAWA, K.,
OKAMOTO, C, ONO, G., OZAKI, M., SAIKI, T., SAKATANI N.,
SAWADA, H., SENSHU, H., SHIMAKI, Y., SHIRAL K., TAKEL Y.,
TAKEUCHI, H., TANAKA, S., TATSUM], E., TERUI, F., TSUKIZAK]I, R.,
WADA, K., YAMADA, M., YAMADA, T., YAMAMOTO, Y., YANO, H.,
YOKOTA, Y., YOSHIHARA, K., YOSHIKAWA, M., YOSHIKAWA, K.,
FUJIMOTO, M., WATANABE, S.-i. & TSUDA, Y. (2022a). Proceedings of the
Japan Academy, Series B 98, 227 (page 96).

226



Nakamura, T., Matsumoto, M., Amano, K., Enokido, Y., Zolensky, M. E.,
Mikouchi, T., Genda, H., Tanaka, S., Zolotov, M. Y., Kurosawa, K., Wakita, S.,
Hyodo, R., Nagano, H., Nakashima, D., Takahashi, Y., Fujioka, Y., Kikuiri, M.,
Kagawa, E., Matsuoka, M., Brearley, A. ]., Tsuchiyama, A., Uesugi, M.,
Matsuno, J., Kimura, Y., Sato, M., Milliken, R. E., Tatsumi, E., Sugita, S.,
Hiroi, T, Kitazato, K., Brownlee, D., Joswiak, D. J., Takahashi, M.,

Ninomiya, K., Takahashi, T., Osawa, T., Terada, K., Brenker, F. E.,

Tkalcec, B. J., Vincze, L., Brunetto, R., Aléon-Toppani, A., Chan, Q. H. S,
Roskosz, M., Viennet, J. .-.-C., Beck, P., Alp, E. E., Michikami, T., Nagaashi, Y.,
Tsuji, T., Ino, Y., Martinez, J., Han, J., Dolocan, A., Bodnar, R. J., Tanaka, M.,
Yoshida, H., Sugiyama, K., King, A. J., Fukushi, K., Suga, H., Yamashita, S.,
Kawai, T., Inoue, K., Nakato, A., Noguchi, T., Vilas, F., Hendrix, A. R,,
Jaramillo-Correa, C., Domingue, D. L., Dominguez, G., Gainsforth, Z.,
Engrand, C., Duprat, J., Russell, S. S., Bonato, E., Ma, C., Kawamoto, T.,
Wada, T., Watanabe, S., Endo, R., Enju, S., Riu, L., Rubino, S., Tack, P.,
Takeshita, S., Takeichi, Y., Takeuchi, A., Takigawa, A., Takir, D., Tanigaki, T.,
Taniguchi, A., Tsukamoto, K., Yagi, T., Yamada, S., Yamamoto, K.,
Yamashita, Y., Yasutake, M., Uesugi, K., Umegaki, I., Chiu, I, Ishizaki, T,
Okumura, S., Palomba, E., Pilorget, C., Potin, S. M., Alasli, A., Anada, S.,
Araki, Y., Sakatani, N., Schultz, C., Sekizawa, O., Sitzman, S. D., Sugiura, K.,
Sun, M., Dartois, E., Pauw, E. D., Dionnet, Z., Djouadi, Z., Falkenberg, G.,
Fujita, R., Fukuma, T., Gearba, L. R., Hagiya, K., Hu, M. Y., Kato, T,
Kawamura, T., Kimura, M., Kubo, M. K., Langenhorst, F., Lantz, C., Lavina, B.,
Lindner, M., Zhao, J., Vekemans, B., Baklouti, D., Bazi, B., Borondics, F.,
Nagasawa, S., Nishiyama, G., Nitta, K., Mathurin, J., Matsumoto, T.,
Mitsukawa, 1., Miura, H., Miyake, A., Miyake, Y., Yurimoto, H., Okazaki, R.,
Yabuta, H., Naraoka, H., Sakamoto, K., Tachibana, S., Connolly, H. C,,
Lauretta, D. S., Yoshitake, M., Yoshikawa, M., Yoshikawa, K., Yoshihara, K.,
Yokota, Y., Yogata, K., Yano, H., Yamamoto, Y., Yamamoto, D., Yamada, M.,
Yamada, T., Yada, T., Wada, K., Usui, T., Tsukizaki, R., Terui, F., Takeuchi, H.,
Takei, Y., Iwamae, A., Soejima, H., Shirai, K., Shimaki, Y., Senshu, H.,
Sawada, H., Saiki, T., Ozaki, M., Ono, G., Okada, T., Ogawa, N., Ogawa, K.,
Noguchi, R, Noda, H., Nishimura, M., Namiki, N., Nakazawa, S., Morota, T.,
Miyazaki, A., Miura, A., Mimasu, Y., Matsumoto, K., Kumagai, K.,
Kouyama, T., Kikuchi, S., Kawahara, K., Kameda, S., Iwata, T., Ishihara, Y.,
Ishiguro, M., Tkeda, H., Hosoda, S., Honda, R., Honda, C., Hitomi, Y.,
Hirata, N., Hirata, N., Hayashi, T., Hayakawa, M., Hatakeda, K., Furuya, S.,
Fukai, R., Fujii, A., Cho, Y., Arakawa, M., Abe, M., Watanabe, S. & Tsuda, Y.
(2022b). Science, eabn8671 (page 96).

227



Namouni, F. & Morais, M. H. M. (2021). Monthly Notices of the Royal Astronomical
Society 510, 276 (page 80).

Napier, K. J., Gerdes, D. W, Lin, H. W., Hamilton, S. J., Bernstein, G. M.,
Bernardinelli, P. H., Abbott, T. M. C., Aguena, M., Annis, ]., Avila, S.,
Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. C., Kind, M. C,,
Carretero, J., Costanzi, M., Costa, L. N. d., Vicente, J. D., Diehl, H. T\, Doel, P.,
Everett, S., Ferrero, L., Fosalba, P., Garcia-Bellido, J., Gruen, D., Gruendl, R. A.,
Gutierrez, G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J.,
Kent, S., Kuehn, K., Kuropatkin, N., Maia, M. A. G., Menanteau, F., Miquel, R.,
Morgan, R., Palmese, A., Paz-Chinchén, F., Plazas, A. A, Sanchez, E.,
Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E.,
Swanson, M. E. C,, To, C., Walker, A. R. & Wilkinson, R. D. (2021). The
Planetary Science Journal 2, 59 (pages 107, 114, 131, 201).

Nesvorny, D., Thomas, F., Ferraz-Mello, S. & Morbidelli, A. (2002). Celestial
Mechanics and Dynamical Astronomy 82, 323 (page 202).

Nesvorny, D. (2011). The Astrophysical Journal Letters 742, 122 (pages 102, 155,
169).

— (2015a). The Astronomical Journal 150, 73 (pages 100, 171, 172, 191).
— (2015b). The Astronomical Journal 150, 68 (page 102).

— (2018). Annual Review of Astronomy and Astrophysics 56, 137 (pages 20, 52, 94,
99,101, 131, 168, 171, 172, 181, 198).

— (2021). The Astrophysical Journal Letters 908, L47 (pages 100, 102, 171, 172,
179, 189).

Nesvorny, D. & Morbidelli, A. (2012). The Astronomical Journal 144, 117
(pages 102, 155, 169, 172).

Nesvorny, D. & Vokrouhlicky, D. (2016). The Astrophysical Journal 825, 94
(pages 100, 128, 172, 191).

Nesvorny, D., Vokrouhlicky, D., Alexandersen, M., Bannister, M. T.,
Buchanan, L. E., Chen, Y.-T., Gladman, B. J., Gwyn, S. D. ], Kavelaars, J. ].,
Petit, J.-M., Schwamb, M. E. & Volk, K. (2020). The Astronomical Journal 160,
46 (page 102).

228



Nesvorny, D., Vokrouhlicky, D. & Morbidelli, A. (2007). The Astronomical Journal
133, 1962 (page 101).

— (2013). The Astrophysical Journal 768, 45 (page 189).

Nesvorny, D., Vokrouhlicky, D. & Roig, F. (2016). The Astrophysical Journal 827,
L35 (pages 100,111,112,114, 117,120, 131, 132,171, 172, 174, 182, 186, 187,
189, 190).

Nesvorny, D., Youdin, A. N. & Richardson, D. C. (2010). The Astronomical Journal
140, 785 (page 91).

Noll, K. S., Grundy, W. M., Nesvorny, D. & Thirouin, A. (2020). Trans-Neptunian
binaries (2018). The Trans-Neptunian Solar System (pages 35, 91).

Noll, K. S., Grundy, W. M., Stephens, D. C., Levison, H. F. & Kern, S. D. (2008).
Icarus 194, 758 (page 91).

Nordlander, T., Rickman, H. & Gustafsson, B. (2017). Astronomy ¢ Astrophysics
603, A112 (page 129).

O’Brien, D. P., Morbidelli, A. & Levison, H. F. (2006). Icarus 184, 39 (pages 93, 95).

O’ Brien, D. P, Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M.
(2014). Icarus 239, 74 (page 96).

Oort, J. H. (1950). Bulletin of the Astronomical Institutes of the Netherlands 11, 91
(page 30).

Paquet, M., Moynier, F., Yokoyama, T., Dai, W., Hu, Y., Abe, Y., Aléon, J.,
Alexander, C. M. O., Amari, S., Amelin, Y., Bajo, K.-i,, Bizzarro, M.,
Bouvier, A., Carlson, R. W., Chaussidon, M., Choi, B.-G., Dauphas, N.,
Davis, A. M., Rocco, T. D., Fujiya, W., Fukai, R., Gautam, I., Haba, M. K.,
Hibiya, Y., Hidaka, H., Homma, H., Hoppe, P., Huss, G. R., Ichida, K.,
lizuka, T., Ireland, T. R., Ishikawa, A., Ito, M., Itoh, S., Kawasaki, N.,

Kita, N. T., Kitajima, K., Kleine, T., Komatani, S., Krot, A. N., Liu, M.-C,,
Masuda, Y., McKeegan, K. D., Morita, M., Motomura, K., Nakai, I,
Nagashima, K., Nesvorny, D., Nguyen, A. N., Nittler, L., Onose, M., Pack, A.,
Park, C., Piani, L., Qin, L., Russell, S. S., Sakamoto, N., Schonbachler, M.,
Tafla, L., Tang, H., Terada, K., Terada, Y., Usui, T., Wada, S., Wadhwa, M.,
Walker, R. J., Yamashita, K., Yin, Q.-Z., Yoneda, S., Young, E. D., Yui, H.,
Zhang, A.-C., Nakamura, T., Naraoka, H., Noguchi, T., Okazaki, R.,
Sakamoto, K., Yabuta, H., Abe, M., Miyazaki, A., Nakato, A., Nishimura, M.,

229



Okada, T., Yada, T., Yogata, K., Nakazawa, S., Saiki, T., Tanaka, S., Terui, F.,
Tsuda, Y., Watanabe, S.-i., Yoshikawa, M., Tachibana, S. & Yurimoto, H.
(2022). Nature Astronomy, 1 (page 96).

Peixinho, N., Lacerda, P. & Jewitt, D. (2008). The Astronomical Journal 136, 1837
(page 36).

Petit, J. M., Kavelaars, J. J., Gladman, B. J., Jones, R. L., Parker, J. W.,
Laerhoven, C. V., Nicholson, P., Mars, G., Rousselot, P., Mousis, O.,
Marsden, B., Bieryla, A., Taylor, M., Ashby, M. L. N., Benavidez, P.,
Bagatin, A. C. & Bernabeu, G. (2011). The Astronomical Journal 142, 131
(pages vii, 35, 36, 58, 86, 100, 102, 111, 116, 118, 190, 191).

Petit, J.-M., Morbidelli, A. & Valsecchi, G. B. (1999). Icarus 141, 367 (pages 109,
153, 164).

Pfalzner, S. (2013). Astronomy & Astrophysics 549, A82 (pages 105, 129, 131).

Pike, R. E., Kavelaars, J. J., Petit, J. M., Gladman, B. J., Alexandersen, M., Volk, K.
& Shankman, C. J. (2015). The Astronomical Journal 149, 202 (page 116).

Pike, R. E. & Lawler, S. M. (2017). The Astronomical Journal 154, 171 (pages 101,
117).

Pike, R. E., Lawler, S., Brasser, R., Shankman, C. J., Alexandersen, M. &
Kavelaars, J. J. (2017a). The Astronomical Journal 153, 127 (page 101).

Pike, R. E., Fraser, W. C., Schwamb, M. E., Kavelaars, J. J., Marsset, M.,
Bannister, M. T., Lehner, M. J., Wang, S.-Y., Alexandersen, M., Chen, Y.-T,
Gladman, B. J., Gwyn, S., Petit, ].-M. & Volk, K. (2017b). The Astronomical
Journal 154, 101 (page 36).

Pitjeva, E. V. & Pitjev, N. P. (2018). Astronomy Letters 44, 554 (page 24).

Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M. &
Greenzweig, Y. (1996). Icarus 124, 62 (page 94).

Portegies-Zwart, S. F. (2009). The Astrophysical Journal 696, L13 (page 129).

Portegies-Zwart, S., Torres, S., Cai, M. X. & Brown, A. G. A. (2021). Astronomy ¢
Astrophysics 652, A144 (pages 30, 105, 129).

Rasio, F. A. & Ford, E. B. (1996). Science 274, 954 (page 109).

230



Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R. & Walsh, K. J. (2014).
Protostars and Planets VI, 595 (page 96).

Raymond, S. N. & Morbidelli, A. (2022). Astrophysics and Space Science Library, 3
(page 109).

Raymond, S. N., Quinn, T. & Lunine, J. I. (2006). Icarus 183, 265 (page 95).

Rein, H. & Liu, S.-E (2012). Astronomy & Astrophysics 537, A128 (pages ix, 17, 39,
130, 155).

Rein, H., Brown, G. & Tamayo, D. (2019a). Monthly Notices of the Royal
Astronomical Society 490, 5122 (page 18).

Rein, H., Hernandez, D. M., Tamayo, D., Brown, G., Eckels, E., Holmes, E.,
Lau, M., Leblanc, R. & Silburt, A. (2019b). Monthly Notices of the Royal
Astronomical Society 485, 5490 (pages 18, 155).

Rein, H. & Spiegel, D. S. (2014). Monthly Notices of the Royal Astronomical Society
446, 1424 (pages 17, 39).

Rein, H. & Tamayo, D. (2015). Monthly Notices of the Royal Astronomical Society
452, 376 (pages 17, 39).

Safronov, V. S. (1972). Evolution of the protoplanetary cloud and formation of the
earth and planets. Jerusalem (Isreal): Israel Program for Scientific Translations
(pages 76, 94).

Sarid, G., Volk, K., Steckloff, ]. K., Harris, W., Womack, M. & Woodney, L. M.
(2019). The Astrophysical Journal Letters 883, L25 (page 25).

Schwamb, M. E., Fraser, W. C., Bannister, M. T., Marsset, M., Pike, R. E.,
Kavelaars, J. J., Benecchi, S. D., Lehner, M. J., Wang, S.-Y., Thirouin, A.,
Delsanti, A., Peixinho, N., Volk, K., Alexandersen, M., Chen, Y.-T.,
Gladman, B., Gwyn, S. D. J. & Petit, J.-M. (2019). The Astrophysical Journal
Supplement Series 243, 12 (page 36).

Shankman, C., Kavelaars, J. J., Bannister, M. T., Gladman, B. J., Lawler, S. M.,
Chen, Y.-T., Jakubik, M., Kaib, N., Alexandersen, M., Gwyn, S. D. ]., Petit, ].-M.
& Volk, K. (2017). The Astronomical Journal 154, 50 (pages 107, 114, 131, 201).

Sheppard, S. S. & Trujillo, C. (2016). The Astronomical Journal 152, 221 (pages 107,
131, 201).

231



Sheppard, S. S., Trujillo, C. A., Tholen, D. J. & Kaib, N. (2019). The Astronomical
Journal 157, 139 (pages 103, 137, 148, 150).

Silsbee, K. & Tremaine, S. (2018). The Astronomical Journal 155, 75 (pages 117,
155).

Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. (2016). The Astrophysical
Journal 822, 55 (page 91).

Smullen, R. A. & Volk, K. (2020). Monthly Notices of the Royal Astronomical Society
497, 1391 (page 39).

Stefll, A., Cunningham, N., Shinn, A., Durda, D. & Stern, S. (2013). Icarus 223, 48
(page 32).

Stern, S. A., Weaver, H. A, Spencer, J. R., Olkin, C. B, Gladstone, G. R,
Grundy, W. M., Moore, J. M., Cruikshank, D. P., Elliott, H. A.,
McKinnon, W. B, Parker, . W., Verbiscer, A. ], Young, L. A, Aguilar, D. A,,
Albers, J. M., Andert, T., Andrews, J. P., Bagenal, F., Banks, M. E., Bauer, B. A,,
Bauman, J. A., Bechtold, K. E., Beddingfield, C. B., Behrooz, N., Beisser, K. B.,
Benecchi, S. D., Bernardoni, E., Beyer, R. A., Bhaskaran, S., Bierson, C.J.,
Binzel, R. P., Birath, E. M., Bird, M. K., Boone, D. R., Bowman, A.F,,
Bray, V. ]., Britt, D. T., Brown, L. E., Buckley, M. R, Buie, M. W., Buratti, B.].,
Burke, L. M., Bushman, S. S., Carcich, B., Chaikin, A. L., Chavez, C. L.,
Cheng, A. F., Colwell, E. ]., Conard, S. ]., Conner, M. P., Conrad, C. A,
Cook, J. C., Cooper, S. B., Custodio, O. S., Ore, C. M. D., Deboy, C. C.,
Dharmavaram, P., Dhingra, R. D., Dunn, G. F., Earle, A. M., Egan, A. F,,
Eisig, J., El-Maarry, M. R., Engelbrecht, C., Enke, B. L., Ercol, C. J.,
Fattig, E. D., Ferrell, C. L., Finley, T. J., Firer, J., Fischetti, J., Folkner, W. M.,
Fosbury, M. N., Fountain, G. H., Freeze, ]. M., Gabasova, L., Glaze, L. S.,
Green, J. L., Griffith, G. A., Guo, Y., Hahn, M., Hals, D. W., Hamilton, D. P.,
Hamilton, S. A., Hanley, J. ]., Harch, A., Harmon, K. A., Hart, H. M., Hayes, .,
Hersman, C. B,, Hill, M. E,, Hill, T. A., Hofgartner, J. D., Holdridge, M. E.,
Horanyi, M., Hosadurga, A., Howard, A. D., Howett, C. J. A,, Jaskulek, S. E.,
Jennings, D. E,, Jensen, ]. R, Jones, M. R,, Kang, H. K,, Katz, D. ],
Kaufmann, D. E., Kavelaars, J. J., Keane, ]. T., Keleher, G. P., Kinczyk, M.,
Kochte, M. C., Kollmann, P., Krimigis, S. M., Kruizinga, G. L.,
Kusnierkiewicz, D. Y., Lahr, M. S, Lauer, T. R., Lawrence, G. B, Lee, ]. E.,
Lessac-Chenen, E. J., Linscott, I. R., Lisse, C. M., Lunsford, A. W.,
Mages, D. M., Mallder, V. A., Martin, N. P., May, B. H., McComas, D. J.,
McNutt]r., R. L., Mehoke, D. S., Mehoke, T. S., Nelson, D. S., Nguyen, H. D,

232



Nunez, J. I., Ocampo, A. C., Owen, W. M., Oxton, G. K., Parker, A. H,,
Pitzold, M., Pelgrift, J. Y., Pelletier, F. ], Pineau, ]. P., Piquette, M. R,,

Porter, S. B., Protopapa, S., Quirico, E., Redfern, J. A., Regiec, A. L.,

Reitsema, H. J., Reuter, D. C., Richardson, D. C., Riedel, J. E.,

Ritterbush, M. A., Robbins, S. J., Rodgers, D. J., Rogers, G. D., Rose, D. M.,
Rosendall, P. E., Runyon, K. D., Ryschkewitsch, M. G., Saina, M. M.,

Salinas, M. J., Schenk, P. M., Scherrer, J. R., Schlei, W. R., Schmitt, B.,

Schultz, D.J., Schurr, D. C., Scipioni, F., Sepan, R. L., Shelton, R. G,,
Showalter, M. R., Simon, M., Singer, K. N, Stahlheber, E. W.,

Stanbridge, D. R,, Stansberry, J. A., Steffl, A.J., Strobel, D. F., Stothoff, M. M.,
Stryk, T., Stuart, J. R., Summers, M. E., Tapley, M. B., Taylor, A., Taylor, H. W.,
Tedford, R. M., Throop, H. B, Turner, L. S., Umurhan, O. M., Eck, J. V.,

Velez, D., Versteeg, M. H., Vincent, M. A., Webbert, R. W., Weidner, S. E,,
Weiglell, G. E., Wendel, J. R., White, O. L., Whittenburg, K. E., Williams, B. G.,
Williams, K. E., Williams, S. P., Winters, H. L., Zangari, A. M. &

Zurbuchen, T. H. (2019). Science 364, eaaw9771 (page 38).

Stern, S. A. (1996). The Astronomical Journal 112, 1203 (page 106).
Stern, S. (1991). Icarus 90, 271 (pages 108, 117).

Stoer, J. & Bulirsch, R. (1980). Introduction to Numerical Analysis. New York:
Springer (pages 16, 17).

Szebehely, V. & Jefferys, W. H. (1968). American Journal of Physics 36, 375
(page 10).

Tabachnik, S. A. & Evans, N. W. (2000). Monthly Notices of the Royal Astronomical
Society 319, 63 (page 31).

Taki, T., Fujimoto, M. & Ida, S. (2016). Astronomy &~ Astrophysics 591, A86
(page 94).

Tamayo, D., Rein, H., Shi, P. & Hernandez, D. M. (2019). Monthly Notices of the
Royal Astronomical Society 491, 2885 (pages ix, 172).

Thommes, E. W., Duncan, M. J. & Levison, H. F. (1999). Nature 402, 635
(pages 102, 169).

Tombaugh, C. W. (1946). Leaflet of the Astronomical Society of the Pacific 5,73
(page 23).

233



Touma, J. R., Tremaine, S. & Kazandjian, M. V. (2009). Monthly Notices of the
Royal Astronomical Society 394, 1085 (page 136).

Trujillo, C. A. & Brown, M. E. (2002). The Astrophysical Journal 566, L125
(page 36).

Trujillo, C. A., Jewitt, D. C. & Luu, J. X. (2000). The Astrophysical Journal 529, L103
(pages 28, 116).

Trujillo, C. A. & Sheppard, S. S. (2014). Nature 507, 471 (pages 103, 107, 112, 195,
197, 200, 204).

Trujillo, C., Trilling, D., Chandler, C., Fuentes, C., Gerdes, D., Strauss, R.,
Lin, H.-W.,, Markwardt, L., Napier, K., Oldroyd, W., Sheppard, S., Adams, F.,
Bernardinelli, P., Holman, M., Juric, M., McNeill, A., Mommert, M.,
Payne, M., Ragozzine, D., Rivkin, A., Schlichting, H., Simpson, A. &
Smotherman, H. (2022). AAS/Division for Planetary Sciences Meeting
Abstracts 54, 501.01 (pages 205, 208).

Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. (2005). Nature 435, 459
(pages 101, 168, 169).

Van-Laerhoven, C., Gladman, B., Volk, K., Kavelaars, J. J., Petit, J.-M.,
Bannister, M. T., Alexandersen, M., Chen, Y.-T. & Gwyn, S. D. J. (2019). The
Astronomical Journal 158, 49 (pages 36, 50, 53, 96, 105, 108).

Le-Verrier, U. (1846a). Astronomische Nachrichten 25, 85 (pages 23, 105).
— (1846Db). Astronomische Nachrichten 25, 65 (pages 23, 105).

Vinogradova, T. A. & Chernetenko, Y. A. (2015). Solar System Research 49, 391
(page 25).

Vokrouhlicky, D., Farinella, P. & Bottke, W. F. (2000). Icarus 148, 147 (page 32).
Volk, K. & Malhotra, R. (2008). The Astrophysical Journal 687, 714 (page 28).

— (2017). The Astronomical Journal 154, 62 (pages 52, 108).

— (2022). The Astrophysical Journal 937, 119 (pages 11, 194).

Volk, K., Murray-Clay, R. A., Gladman, B. ]., Lawler, S. M., Yu, T. Y. M,,
Alexandersen, M., Bannister, M. T., Chen, Y. T., Dawson, R. L., Greenstreet, S.,

234



Gwyn, S. D. ], Kavelaars, J. J., Lin, H. W, Lykawka, P. S. & Petit, ].-M. (2018).
The Astronomical Journal 155, 260 (pages 112, 116, 190).

Volk, K., Murray-Clay, R., Gladman, B., Lawler, S., Bannister, M. T., Kavelaars, J. J.,
Petit, ].-M., Gwyn, S., Alexandersen, M., Chen, Y. T., Lykawka, P. S., Ip, W. &
Lin, H. W. (2016). The Astronomical Journal 152, 23 (page 191).

Wahbhaj, Z., Koerner, D. W., Ressler, M. E., Werner, M. W., Backman, D. E. &
Sargent, A. L. (2003). The Astrophysical Journal Letters 584, L27 (page 208).

Walsh, K. J. & Morbidelli, A. (2011). Astronomy & Astrophysics 526, A126
(page 101).

Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M.
(2011). Nature, 1 (page 96).

Weidenschilling, S. J. (1977). Astrophysics and Space Science 51, 153 (pages 91, 95).
Weidenschilling, S. J. (1978). Icarus 35, 99 (page 32).

Weidenschilling, S. ]. & Marzari, F. (1996). Nature 384, 619 (page 109).
Weissman, P. R. (1990). Nature 344, 825 (page 30).

Wetherill, G. W. (1975). “Late heavy bombardment of the moon and terrestrial
planets”. Vol. 2. Lunar Science Conference. New York: Pergamon Press, Inc.,
p. 1539 (page 97).

— (1986). “Accumulation of the terrestrial planets and implications concerning
lunar origin”. Origin of the Moon, p. 519 (page 95).

Wetherill, G. & Stewart, G. R. (1989). Icarus 77, 330 (page 93).
Wiegert, P., Connors, M. & Veillet, C. (2017). Nature 543, 687 (page 86).

Williams, J. G. (1969). “Secular Perturbations in the Solar System”. PhD thesis.
University of California, Los Angeles (page 44).

Wisdom, J. (2016). Monthly Notices of the Royal Astronomical Society 464, 2350
(page 18).

Wisdom, J. & Holman, M. (1991). The Astronomical Journal 102, 1528 (pages 17,
162).

Yabushita, S. (1980). Astronomy & Astrophysics (pages vii, 59-61, 79, 118).

235



Yada, T., Abe, M., Okada, T., Nakato, A., Yogata, K., Miyazaki, A., Hatakeda, K.,
Kumagai, K., Nishimura, M., Hitomi, Y., Soejima, H., Yoshitake, M.,
Iwamae, A., Furuya, S., Uesugi, M., Karouji, Y., Usui, T., Hayashi, T.,
Yamamoto, D., Fukai, R., Sugita, S., Cho, Y., Yumoto, K., Yabe, Y.,
Bibring, J.-P,, Pilorget, C., Hamm, V., Brunetto, R., Riu, L., Lourit, L.,
Loizeau, D., Lequertier, G., Moussi-Softys, A., Tachibana, S., Sawada, H.,
Okazaki, R., Takano, Y., Sakamoto, K., Miura, Y. N, Yano, H., Ireland, T. R.,
Yamada, T., Fujimoto, M., Kitazato, K., Namiki, N., Arakawa, M., Hirata, N.,
Yurimoto, H., Nakamura, T., Noguchi, T., Yabuta, H., Naraoka, H., Ito, M.,
Nakamura, E., Uesugi, K., Kobayashi, K., Michikami, T., Kikuchi, H.,
Hirata, N, Ishihara, Y., Matsumoto, K., Noda, H., Noguchi, R., Shimaki, Y.,
Shirai, K., Ogawa, K., Wada, K., Senshu, H., Yamamoto, Y., Morota, T.,
Honda, R., Honda, C., Yokota, Y., Matsuoka, M., Sakatani, N., Tatsumi, E.,
Miura, A., Yamada, M., Fujii, A., Hirose, C., Hosoda, S., Ikeda, H., Iwata, T.,
Kikuchi, S., Mimasu, Y., Mori, O., Ogawa, N., Ono, G., Shimada, T,
Soldini, S., Takahashi, T., Takei, Y., Takeuchi, H., Tsukizaki, R., Yoshikawa, K.,
Terui, F., Nakazawa, S., Tanaka, S., Saiki, T., Yoshikawa, M., Watanabe, S.-i. &
Tsuda, Y. (2022). Nature Astronomy 6, 214 (page 96).

Ye, Q., Masci, F. J., Ip, W. H., Prince, T. A., Helou, G., Farnocchia, D., Bellm, E. C.,
Dekany, R., Graham, M. J., Kulkarni, S. R., Kupfer, T., Mahabal, A.,
Ngeow, C.-C., Reiley, D. J. & Soumagnac, M. T. (2020). The Astronomical
Journal 159, 70 (page 32).

Youdin, A. N. & Shu, F. H. (2002). The Astrophysical Journal 580, 494 (page 90).

Yu, T. Y. M., Murray-Clay, R. & Volk, K. (2018). The Astronomical Journal 156, 33
(pages 112, 117).

Zhang, K. & Gladman, B. J. (2022). New Astronomy 90, 101659 (pages vi, 16, 18,
31, 81, 118).

Zhou, L., Xu, Y.-B., Zhou, L.-Y., Dvorak, R. & Li, J. (2019). Astronomy &
Astrophysics 622, A97 (page 32).

236



Appendix A

GLISSER Validation of Performance

A.1 Validation of the GLISSER Integrator

Precise validation of numerical celestial mechanics codes is difficult because exact
solutions to the problem exist only as special cases. Usually, there are some con-
served integrals (e.g. energy) in the system, and test particles could have wildly-
wrong orbits if the total system energy is negligibly perturbed. To validate simu-
lations resulted from the GLISSER integrator, I first verified the conservation of the
Jacobi constant Cy in a CRTBP system (Section 1.1.3) by carrying out a 1000-yr inte-
gration with a circular Earth at @ = 1 au and a test particle initialized on a crossing
orbit with ag = 1.1 au, ey = 0.12, and iy = 3°; this gives the particle the Jacobi con-
stant of C; &~ 2.99. This simulation has the time step of 10 days (Po,/At ~ 0.027)
and the time block size of 100 time steps. The time evolutions of its a and g, and
the fractional changes of both the Jacobi constant and the Tisserand parameter are
plotted in Figure A.1.

As shown in Figure A.1, the Jacobi constant (and the Tisserand parameter) is
conserved to the order of <5 x 107° for the majority of the integration (middle
panel). Relative-large variations in energy (~1 x 10~*) only occur when the particle
is having encounters with the planet (bottom panel). I also halved the time step to 5
days and re-run the same initial condition and confirm that the Jacobi constant will
be conserved to ~2 x 107° (ifignoring those spikes), nearly a factor of 4 smaller than

the previous simulation with a doubled time step. This is consist with the O(A#?)
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Figure A.1: A GLISSER simulation with an Earth-scattered particle showing
the conservation of the Jacobi constant and the Tisserand parameter for
1000 yr. The top panel shows the time histories of a and g, the middle
panel shows the fractional changes of Cj and T, and the bottom panel is a
re-plot of the middle panel but with a larger range. Dark lines mark > 3
Hill-sphere encounters recorded by the integrator.

numerical error of a second-order integrator.

Furthermore, I carried out another simulation with a Neptune-scattered par-
ticle (with ap = 31.4 au, ¢ = 0.4, and iy = 1° giving 7 ~ 2.75) to show the
conservation of the Tisserand parameter for 500 Myr (Figure A.2). This simulation
has the time step of 200 days (P, /At ~ 0.003) and the time block size of 250 time
steps. Figure A.2 demonstrates the Tisserand parameter is conserved to the order
of <1 x 107* in this long-term GrLISSER simulation. Considering the integrator
intrinsically interpolates planetary locations (the planetary history file is stored in
single-precision float numbers with the precision of ~ 1 x 107°) to speed up the
close encounter algorithm, this level of conservation is within expectation.

I also directly compared the orbital evolutions of resonant particles integrated
by SwirT (Levison & Duncan, 1994) and GLISSER, shown in Figures A.3 and A 4.

Note that this is a rather challenging test as GLISSER interpolates planetary orbits
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Figure A.2: A GLISSER simulation with an Neptune-scattered particle showing
the conservation of the Tisserand parameter for 100 kyr.

Particle: 200

40.0
GLISSER

a (au)

q (au)

P

[y 0.25 0.50 0.75 1.00 125 150 175 2.00
Time (Myr)

Figure A.3: Comparison between GLISSER and SWIFT simulations for a 3:2 res-
onant TNO with Neptune. The four panels show time histories of 4, g, i,
and the resonant angle, from top to bottom.
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Figure A.4: Same as Figure A.3 but for the 5:2 resonance.

between time chunks. However, these two examples demonstrate that GLISSER is
a reliable integrator that produces very similar evolutional histories produced by
SWIFT, a heavily-tested N-body integrator in the industry.

In addition to these two validation, I also compared GLISSER against the MER-
CURY integrator (Chambers, 1999) by running the g-raising simulation that demon-
strates the rogue’s secular effect. Figure 1.7 shows show very similar orbital distri-
butions produced by the two integrators. Therefore, I conclude GLISSER is a reliable
GPU integrator that can correctly resolve close encounters and produce both reso-

nant and secular dynamics.

A.2 Efficiency Comparison Between GLISSER and Other
Integrators

An enormous advantage of GLISSER over other CPU integrators (SWIFT or MER-
CURY) is that it can handle far more test particles with almost no speed penalty,
as long as the particle count is less than the ‘chunk size’ (similar to the number of
“threads”) that a certain GPU can handle simultaneously; for example, one can in-

tegrate 14,000 particles using GLISSER on a K20 GPU in the same amount of time
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as 1000. Once the number of particles exceeds the GPU chunk size, the execution
time would double, as the GPU has to handle two batches of test particles in serial
sequence. Different GPUs have different clock speed and chunk size, which together
dominantly determine the overall efficiency of a GPU card in this application.

A merit comparison between MERCURY and GLISSER is shown in Table A.1,
where the K20 is about ten years old, the V100 is released in 2017, and the RTX 3070
is a gaming GPU (not optimal for scientific calculation) released in 2020. When the
particle number is small, GLISSER is about an order of magnitude faster than MER-
CURY. But that’s not even the full power of GLISSER. Rows 7-11 in Table A.1 show
GLISSER loaded with large amount of particles is 60-260x faster than MERCURY.

Additionally, GLIsSER’s efficiency also depends on number of the used CPU
cores. When the close encounter frequency is so high that one CPU core is not
enough to resolve all encounters in time, GLISSER will automatically split the SWIFT
jobs for available CPU cores to speedup the integration. This explains why in Ta-
ble A.1, V100(s/12) is slightly faster than V100(s/8).
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Table A.1: Comparison between SwIFT, MERCURY, and GLISSER on different

machines

GPU (CPU ) Integration Compute :
# Integrator cores) Particles Timg (Myr) Timep(hr) Merit
1 SWIFT CPU only (1) 1000 30 27.0 1.1
2  Mercury  CPU only (1) 1000 100 44.0 2.7
3 GLISSER K20 (1) 1000 100 4.4 22.7
4 GLISSER V100 (o/1) 1000 100 3.0 33.3
5 GLISSER V100 (s/1) 1000 100 2.6 38.5
6  GLISSER RTX 3070 (1) 1000 1 0.1 9.1
7  GLISSER K20 (8) 80000 100 21.9 365.3
8  GLISSER V100 (0/8) 80000 100 12.2 655.7
9 GLISSER V100 (s/8) 80000 100 11.8 678.0
10  GLISSER V100 (s/12) 80000 100 11.4 701.8
11  GLISSER RTX 3070 (6) 80000 1 0.5 170.0

Note. The merit (higher is better) is in the unit of kiloparticles x Myr /

(computation hours). ‘0’ stands for ‘opio’ which is a machine in Brett Gladman’s
laboratory, and ‘s’ stands for ‘sockeye’ which is the high-performance computing
platform at UBC.
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Appendix B

Dynamical Effects of Rogue

Encounters

In this appendix, I estimate the encounter effect induced by a rogue planet, in the
assumption that the dominant effect brought by the planet is through encounters
not the secular. This only holds when the rogue’s semimajor axis is much larger
than the small body’s (a, > a). The derived equations are used in Chapters 5 and
6.

B.1 Encounter Frequency from a Highly-Eccentric Planet

To estimate the number of close encounters occurring in the scattering disk during
the rogue’s presence,  assume a rogue planet of the mass m, is orbiting the Sun on an
eccentric orbit with the semimajor axis of a,, the perihelion of g,, and a dynamical
life time of T,. I also assume a swarm of TNOs with the same a, ¢, and i, but various
orbital orientations (thus random w, €2, and M), which roughly forms an partial
spherical shell of small bodies. When an eccentric planet crosses the shell, its orbital
plane basically slices an annulus of TNOs from perihelion g = a(1 — e) to aphelion
Q = a(1 + e). If the rogue’s perihelion ¢, is inside the annulus inner edge of ~ 35
au (which is often the case for a more realistic rogue coupled with giant plants),
for each rogue orbit, it will go through the annulus twice with the typical crossing

velocity veross roughly being the rogue’s velocity at the annulus’ average distance (a).
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Using the vis-viva equation:

2 1
Vcross = \/ﬁ - - — (B.1)

b
a a,

where 1 = GMy, is the gravitational parameter. The crossing time #.yo5s, Which is
defined as the time the rogue spends in the annulus per orbit, is roughly
2(Q — 4ae
feross < ( q) = . (B.2)

Vcross Vcross

The accumulated crossing time Teross throughout the rogue’s dynamical lifetime is
thus

Tcross _ tcross
T, P,
4ae VI

o 2 B.3
ViE— L ama) (53

_ 2 (a> (2ﬂ - 1)_§.
T \ a a
In the assumption that a, > a, Equation (B.3)’s last term can be expanded around

0, leaving the leading term of , / aﬂ /v/2. Thus T have

3

Tcross 2 2
V2 (“) : (B.4)

T, T a,

which gives the ratio of the total rogue encounter time to its lifetime.

Next, let’s estimate the rogue’s encounter volume. Since the rogue has an ex-
tremely eccentric orbit, its Hill sphere varies significantly along the orbit, which
should thus not be calculated using the rogue’s semimajor axis. Instead, one knows
all the encounters occur in the annulus, thus the average hill radius of the rogue
should be set by its average encounter distance, which to the lowest order is approx-

imately the semimajor axis of the small bodies

1
_ m, 3
Ry =~ , B.5
H~a <3M@> (B:5)
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For weak encounters whose proximity is larger than the Hill radius, the ‘effective
my

(O]
use SRy as the ‘encounter domain. The number of encounters per orbit can be

3
radius’ is still proportional to < > . Thus, without loss of generality, one can

obtained using Equation 3.32

— 2 2
R 3
Menc g (PR L g2 ()T (B.6)
N a M@
The cumulative encounter frequency (i.e. the average number of encounters for each

particle) over the rogue’s dynamical lifetime T, is thus

Nenc _ ”enc TT

N N P

T m % a _3
~ (2 r r r 2
=7 <1 yr> (M@) (1 au) ’ (B.7)
TT mr % ar _3
~ 6 32 100 M ( ) 2
yr 2Mg 300 au

Note that this is independent of ‘@’ as long as a, > a

B.2 Orbital Element Changes Due to Rogue Encounters

To estimate the magnitude of the induced orbital element changes (Aa, Ae, and Aji)

for a certain rogue flyby, I start by writing down the vis-viva equation for a TNO at

v:\/m/%—é, (B.8)

where 1 = GMg and v is the TNO’s heliocentric speed. Before and after a rogue

the heliocentric distance of r:

encounter, the distance r remains almost unchanged, whereas a small change in Vs
magnitude due to the flyby will result in a change in its orbital elements. Differen-

tiating both sides of Equation (B.8) gives

Av = ——Aa. (B.9)
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I demonstrated in Section 3, that in a hyperbolic flyby, the relative velocity (v)
between the TNO’s heliocentric velocity vector (v) and the rogue’s (v,) will change
its orientation by Af# while maintaining the magnitude before and after the en-
counter. Recall that when the impact parameter b is large, A can be approximated
as (see also Equation 3.26)

2/4r
Af ~ B.10
SR (B.10)

where j1, = Gm,, m, is the mass of the rogue, and b is the impact parameter. Con-

sidering v = v, + v, their magnitudes are given by (see Figure 3.3):

v =12 + 2+ 2v,v00c080), (B.11)
where ¢ is the angle between v, and v.. Asillustrated in the hyperbolic flyby model,
the planetary encounter can only change v by rotating v..’s orientation (in other
words, alter 6 in Equation (B.11) with v, and v, unchanged). Therefore, one can
differentiate both sides of Equation (B.11)

—VrVo

Av =

sind A, (B.12)

Replace Av with Equation (B.9) and rearrange the terms, I get the following equa-

tion for the fractional change in small body semimajor axis for a specific rogue en-

Aa Ve my a
— = 4 (%051119) <M@> (E) . (B.13)

One can also write b as a multiple of the average Hill radius SRy (Equation (B.5))

2
& =43 (Vrsin9> ( s > ’ gL (B.14)
a Voo Mg

counter of b and 6:

v
To estimate the order of magnitude of the factor (——sinf), I assume at close en-
Voo

counters, v, ~ /2 v, which is basically assuming the rogue’s trajectory is parabolic

and the TNO’s velocity is its circular velocity at r = a. Combining these assump-
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tions with Equation (B.11), I obtain

Ve . sinf
——sinf =

Voo —cosf) — /cosf? —1/2

which is a function that only depends on a single angle € in the range of 135° < 6 <

(B.15)

180°. The averaged value of Equation (B.15) over all available 6 is ~1. Therefore,
Equation (B.14) can be further simplified to

2
Aaa:6(m,)a -1 (B.16)

Having this result, estimating the typical Ae and Ai is more straightforward.

Here, I only give rogue estimates under the assumption that the TNO affected by
rogue encounters has a near-circular and co-planar orbit (i.e. e ~ 0 and i ~ 0°).
This is true for objects in the cold classical belt but can also be applied TNOs with
small e and i.

The order-of-magnitude changes in e and i caused by a velocity change Av are

given by (Burns et al., 2022)
Ae=Ai~— (B.17)

Recall Equation (B.9), in which the fractional change in semimajor axis can also be

rewritten as Aa/a = 2%, therefore, one simply has

Ae— Ain3 (’”) 51, (B.18)

Equation (B.16) and (B.18) basically state that for a typical rogue planet flyby,
the induced fractional change in a and changes in e and i mainly depend on the
mass of the planet m, and the flyby distance in Hill radii 5. One can thus combine
these equations with the flyby frequency equation (B.7) to estimate the cumulative
impact from an eccentric planet that repeatedly transverses the Kuiper Belt. To do
this, I apply the equation from the random walk theory, where the expected distance

over a series of random walk encounters is equal to \/Nepc times the average ‘step
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size. Hence, the cumulative

|Aale _ [Newc  Aa
a N a’

T 1 B (B.19)

~ 0.005 r r ( & ) '

100 Myr 2Mg 300 au
Similarly, the cumulative changes in e and i are given by

T, \? :

m a -3
|Ael. = | Al ~ 0.0025 r r ( r ) i (B.20)

100 Myr 2Mg 300 au
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